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Abstract: Telecommunication networks consist of communication units interconnected physically or by means of

protocols in order to provide basic services like data, voice, or image transfers. In this study, a modeling frame for

network units and their links in a topological frame is presented based on a real mobile communication network named

TASMUS (TAktik Saha MUharebe Sistemi - Tactical Field Combat System). Alarm handling is one of the most critical

features required in communication networks. Based on simulated single alarm and multiple (double) alarm scenarios,

known powerful alarm estimation approaches, namely the coding method, neural networks, and knowledge-based systems,

have been studied to assess their capabilities for identifying multiple faults that might occur simultaneously in real time.

They have also been compared in order to evaluate the performance of alarms under different noise levels for specific

TASMUS networks.

Key words: Telecommunications network, network management, neural networks, alarm correlation, fault identification,

coding method, minimal distance decoder

1. Introduction

The basic management activations in telecommunications network units deal with configuration, performance

tests, alarm handlings, security, and accounting managements [1,2]. Alarm management in general includes

monitoring efforts of network alarms and taking diagnostic measures after identifying the faults causing alarms

in the network. As the size of the telecommunications network increases, simultan[eous problems that may cause

multiple alarms will also be inevitable. Thus, alarm monitoring and alarm handling are accepted as a serious

matter. Alarm data should be processed carefully and the root cause/causes over the recorded alarms must

be isolated and estimated with a high accuracy rate in order to take proper and corrective measures in time.

The process to achieve this purpose begins with the alarm correlation along the alarm strings of the network.

Possible causes are matched to those alarms to provide a fault-correlated alarm database with certain causes.

Thus, one of the main applications for the network management system is employing the alarm manager and

agents that define other useful manageable applications embedded on network elements in order to access unit

resources [3]. Basically, agents send alarms to the manager whenever any abnormality occurs in its functional

routines and routes.

There are various studies generally defining alarm management in a knowledge-based structure, and more

rarely in statistical and neural basis (causal model, model-based reasoning, case-based reasoning, rule-based,
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coding) [3–15]. The coding approach is the most popular, well-known, and relatively simple to implement as a

main analysis tool in many studies [4,5]. In order to identify the fault alarms in correlations, their causes have to

be clustered through recorded alarm data in time windows or using SOM topology [3]. In the coding approach,

alarms are converted to vector codes and correlated with all elements of a matrix containing all observed/

recorded faults. These matching and correlation factors are generally evaluated by a minimum distance decoder

(MDD). There is a study employing a neural network as an alternative tool to be used instead of MDD in the

coding method [3,9]. It was reported that even in noisy environments, a neural network gives better results

than the MDD for identifying single source-based faults [6].

In general, most of the studies published and shared in this area assume a single fault and associated time

correlation. There is a lack of detailed analysis on neural models and their comparative performance reports,

and a few analyses that consider the predictive potential of neural networks with multiple faults available [[8,9].

In this study, we begin with the modeling frame of a real telecommunication network and its components in

order to obtain realistic simulation scenarios for alarm-providing signals [7]. Taking this network modeling

frame as a basis for our case study, the coding method and MDD algorithms together have been examined for

single and double alarms in various alarm scenarios. In the next stage, this standard method employing the

coding approach was replaced by a neural network structure and a knowledge-based system while analyzing

various design parameters for searching for the best possible outcome in a predictive purpose.

The first section of the article introduces the basic alarm concepts and the frame in which the research

development is discussed. The problem development section reviews essentials for understanding the basic

models in theory and simulations in terms of system topologies and their possible alarm scenarios. In this part,

the article also presents fundamentals of building blocks of modeling tools and preparing the alarm data sets

as close as possible to the real cases in the context of TASMUS configuration. The third section underlines

the theory of well-known classification and correlation techniques under the problem development requirements

and organizes these methods, namely MDD, multilayer perceptrons of an artificial neural network (ANN), and

a knowledge-based system (KBS), separately for the case studies defined on the simulation models. The last

section discusses all the results and performances for single and double faults generated by simulated models.

2. Problem development and modeling

2.1. Topology symbols

A telecommunication network is generally modeled by a set of radio link equipment and asynchronous transfer

mode (ATM) switches. Each network element also has manageable agent software. As in the traditional way,

the network elements are represented by nodes with their access points. The equipment for ATM switching,

band III, and band IV radio links are abbreviated as S1, B1, and M1 as shown in Figures 1a, 1b, and 1c,

respectively. Some typical connection types between units are shown in Figures 2a–2d. Band III radio links in

general can be used to serve with a single connection while band IV can provide two radio links at the same

time.

1

23

4

S1 1 2B1 M1
1

2
3

(a) (b) (c)

Figure 1. Network units: a) ATM switching, b) radio link band III, c) radio link band IV.
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(a) (b)

(c)
(d)

Figure 2. Some basic connection types: a) band III-band III, b) band I-band IV, c) switch-band III, d) switch-band

IV.

In this study, a TASMUS network managed by ASELSAN (Turkey) as one of the projects was used to

simulate a real network case. The TASMUS network, which combines ATM and ISDN technologies internally, is

a communication network that provides secure, high-quality voice, video, and data communication to stationary

and mobile users [7]. The system consists of three layers of WAN, LAN, and mobile area network (WLAN) and

their associated links. In its mobile system structure, there are time division multiple access (TDMA)-based

wireless radio receivers and mobile radio link providers basically for military uses. All those receivers use a data

service provided by the ISDN central base to reach all network nodes. This briefly defined system may be a very

complicated network with many links covering a military area. However, the modeling units in a topological

frame will give us an accurate replication for other real configurations.

The following models shown in Figures 3a and 3b have been generated especially for simulating and

understanding some of the real conditions in a similar TASMUS network. S1, S2, and S3 are ATM switching

equipment and B1, B2, B3, B4, M1, and M2 are radio link devices physically connected to ATM switches. The

numbered black circles show the access points of the equipment. Network elements are connected via links and

can make connections as BB1, BB2, MM1, and SS1 indicating the connections between units. For example, BB2

refers the second band II to band II connection. Any equipment failure or link breakdown in the network can

cause many possible faults in a chain response (some of them may be unpredictable according to the complexity

of the scenario). For such cases the equipment sends alarms to an alarm manager warning that a fault has

been observed at that instant. In this study, only link-related alarms are considered in order to make a simple

analysis of the performance of the modeling methods outlined above.

Including device-related alarms requires more definitions on the alarm sets and is not necessary to explain

the performance analysis of the alarm handling models in comparative ways in our model developing stage. From

the topology given in Figure 3a, when a link is broken down or a network element is out of the service, multiple

alarms even for a single cause may be generated from the network. For instance, when the MM1 link is broken

down, M1, M2, S2-2 (2 refers to the terminal number), S2-3, S3-2, and S3-3 send alarms within a defined

short time. Those alarms can also be correlated by using their time window relationships. However, the alarm

operator cannot directly resolve the alarms and difficulties to find the root causes still remaining to be solved,

e.g., the problem on the MM1 link for this case. As a result the error management system should sort out the

problem by identifying the fault (MM1) from the alarm set and the correlated relations. This study extends the

multiple alarms problem introducing the second root of causes as well. From the same model, it is also possible

to consider another case when two links, BB1 and BB2, are broken down at the same time. In this case, S1-1,
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Figure 3. Network topologies used in simulations: a) first case, b) second case.

S2-1, B1, B3, S1-2, S3-1, B2, and B4 related alarms will be observed. Note that, for this case, time correlation

on received alarms may not correctly cluster the alarms since correlated alarms contain multiple faults.

2.2. Correlation matrix

For identifying the cases in the correct tracks of alarms, a correlation matrix, introduced as a simple solution

by including all the faults and alarms in the network, is tabulated in Figure 4. This is the corresponding matrix

for the previously defined topology given in Figure 3a as an example. All of the network elements and links are

defined together with all of the link-related alarms that can possibly be received. In the correlation matrix the

row headings show the access points or network elements that send the alarms and column headings show the

probable problems. The top of each column vector in the matrix defines a single symptom with the associated

(alarm) vector. The correlation matrix for the second case given in Figure 3b is inevitably more complicated
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due to its size and connections. However, in the simulations both cases will be considered to test our chosen

methods for comparison. The creation of the correlation matrix is straightforward and easy to build in practice.

If the network topology is available and modeled then all scenarios can be conveyed into the table. In terms

of computer simulation, the associated correlation matrix can easily be generated by using a suitable compiler.

One should note that the relevant codebook defined by the method is the same as the correlation matrix since

there is no redundant alarm information.

Figure 4. Correlation matrix for case 1.

3. Theory for the tools used for fault detection

This study uses the same topology with different alarm scenarios for generating experimental data sets for

implemented modeling approaches for the detection task. Thus, there will be brief explanations in the following

sections about how these modeling tools utilize the data set in the problem development stage.

3.1. Coding approach

The coding approach uses the terms “problem”, “symptom”, and “correlation” instead of “fault”, “alarm”,

and “identification”, respectively. The set of symptom events caused by a problem is treated as a “code” that

underlines the problem. This approach uses the MDD to match alarm patterns in the run-time. Correlation is

simply the process of decoding the set of observed symptoms by determining which problem has the observed

symptoms as its code. The coding approach consists of two phases [4,10]. The first phase is the codebook

selection phase. In this phase, all of the problems and symptoms are organized using their cause and effect

relationships. A causality graph is obtained with these relationships. Using the causality graph, a correlation

matrix including all sets of symptoms and problems is formed. Finally, the correlation matrix is reduced to a

codebook. The codebook is an optimal subset of events that must be monitored to distinguish the problems of

interest from one another while ensuring the desired level of noise tolerance. The preprocessing algorithm can

be used to build the optimal codebook [11].

The following phase is the decoding phase, in which the events in the codebook are monitored and

analyzed in real-time by finding problems whose codes optimally match an observed symptom vector. For

binary vectors with the same number of elements, the number of locations in which their respective elements

differ is called the Hamming distance between these vectors [16]. The MDD calculates the Hamming distance

between the observed symptom vector and the code. The cause represented by the codebook vector with the
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smallest Hamming distance is proposed to be the problem. Missing and additional alarms are rated as noise.

Minimal distance decoding can resolve problems in the case of noise depending on the codebook selection. In

the experimental study, a data set is prepared by concatenating 1000 vectors picked up randomly from the

matrix. In the first topology there are 16 different alarm vectors while in the second topology there 30 different

vectors replicated in a 1000-samples-long data matrix for each case as shown in Figure 5.

Figure 5. Concatenated alarm vectors.

For the first topology the data matrix is 14 × 1000 in dimension, whereas the second one is 26 × 1000.

It is also possible that alarm vectors can carry their own structural errors in real time due to misreading,

transmission, and alarm correlation problems. In order to minimize the effect of this actual problem, all

possibilities are covered by introducing different level of noises, i.e. replacing digits with their complementary

ones. For example, in the first data set, if 10% noise is required to be added to the data set, 10% noise will

mean replacing 1400 digits with its complementary digits out of the total 14,000 elements in the matrix. For

these two topologies the performances of the MDD are presented as correct identification of single faults versus

the percentage of noise introduced in Figure 6a. If the time window is not selected properly or two alarms

occur at the same time, naturally alarm vectors will obtain indications defined by two alarms. This situation

introduces a more difficult case to be handled by the alarm management unit. In Figure 6b, this case with a

similar process is presented for two possible causes that can be detected in two different topologies with the same

noise-adding schedule. In order to prepare the data set including two faults in one vector, the combinations of

two vectors are used in a random manner. The samples that have the same elements are not included in the set

and the alarm vectors through the combination process are concatenated to get 1000 samples as before. The

best results indicating two faults are accepted as the sources of the alarms by using the MDD method utilizing

the Hamming distance on the noisy data. As we can conclude from the figures, the MDD method works fine

when there is no noise introduced. However, as expected, the performance drops gradually as the noise level is

increased. The performance of the MDD for the double faults becomes poor considering that only 480 alarm

vectors are recognized correctly with no noise presence since there is a difficulty to distinguish different alarms

from generated similar alarm vectors. The next part will assess the performance of a neural network approach,

specifically a multilayer perceptron structure.
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Figure 6. The effect of noise on MDD for a) single fault, b) double faults.

3.2. Neural network as a nonlinear modeling tool

Multilayer perceptrons (MLPs) are proven to be universal approximators for a nonlinear input output mapping.

It has long been a problem in nonlinear modeling to find an efficient set of nonlinear functions to approximate

the nonlinearity of problems for which the system architecture is not necessarily known [16,17]. Modeling a

process can simply be defined as follows:

YP = Φ(Xp) + υ, (1)

where Xp ={x1, x2, . . . xn } stands for input parameters for the process, while Yp ={y1, y2, . . . yn} refers to the

outputs of the process and υ is an additive noise (it is assumed that the process to be modeled obeys Eq. (1)

given above). Under these assumptions, an associated neural network (NN) model can be given by:

Yn = φ(XP ). (2)

Yn ={yn1, yn2, ....ynm, ...ynM } is the output of the NN model and m is the number of the outputs defined

by m = {1, . . . ,M} . Φ(.) in Eq. (1), and φ(.) in Eq. (2) are nonlinear functions that describe input-output

relations for the process and NN-based model, respectively. This MLP structure with hidden layers together

with a popular learning algorithm known as the error backpropagation algorithm shows an ability to learn from

experience through adjusting weight parameters in the training phase. After sufficient training, the model is

said to generalize the physical model well on the test data, which had never been used before in the testing

stage of the NN model. For a valid generalization, it is important to avoid a phenomenon known as overfitting

(overtraining), as well as undertraining, which stands for using fewer epochs than required for the optimal

result of the generalization problem [16]. In both cases, the network loses the ability to generalize between

similar input-output pairs. The performance of this structure is also strongly related to the training time along

with the training set, which consists of carefully chosen pairs of inputs and their corresponding outputs. The

practical network used in our study is a feedforward neural network with 100 hidden neurons in order to cover

the complicacy that the problems demand. For the backpropagation algorithm, the learning rates are fixed to

η = 0.5 and the momentum term is chosen as α = 0.6. The input and output neurons are selected based on

the problem as usual. The output neurons, for instance, are limited by the number of causes that might occur

in the network. Hidden and output neurons use “sigmoid” functions as a nonlinear unit. It is well known that

there are many parameters that affect the performance of the neural network in the learning and the testing

stages. Many important parameters were analyzed in detail and reported with a sufficiently comparative manner
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[18]. This study refines many possibilities from parameter selection to model selection along with determining

a proper learning algorithm selection. Based on the best topology and the parameter selections the following

success rate for the fault recognition task is recorded and presented in Figure 7. The same vector sets for two

cases have been used again for the neural networks solution. As a standard phase, the set has been divided into

two sets to be used in training and testing stages. In the testing stage we have used all available data (1000

vectors) to cover all possible alarm scenarios.

Figure 7. Neural network results under noise: a) for a single fault, b) double faults (α = 0.6, η = 0.5, neurons in single

hidden layer = 100, epochs = 500).

More detailed analysis has been carried out in order to propose the best parameter set for the optimal

neural network considering the effects like number of epochs, momentum terms, learning rates, number of

neurons, and hidden layers [18]. As presented for the MDD, the results obtained from the best neural structure

are given in Figures 7a and 7b for single and double faults, respectively. Due to the inherent nonlinearity of

the neural model, the performance is much better if it is compared with the results of the MDD, especially for

scenarios including double faults. In both approaches, the second case has proven itself as a more challenging

topology to identify the alarms. Under 10% noise addition, single and double fault recognitions will be in

the bands of 800–700 and 600–500 correct identification rate, respectively. These figures show that the neural

network proposed performs well even if noise is extremely effective through communication channels. If there

is not any noise challenge, the figures show that the NN model picks up all alarms and interprets correctly

in the given time window. When the noise (number of bits complemented) is increased, the performance of

identification drops gradually. The last method to be compared is a rule-based model, which shows another

paradigm toward a similar task.

3.3. Simulations by rule-based model

In previous parts of the analysis, practical difficulties were observed in generation of the correlation matrix based

on cause-and-effect graphs. This part will use the first phase of experience obtained by both the MDD and NN

models and redefine the same problem in the frame of knowledge bases in order to develop a better working

mechanism. Facts and rules that can be used in constructing correlation matrices in PROLOG realization will
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be reviewed for the implementation of the rule-based solution when the alarms from the network are used as

inputs to a similar problem.

3.3.1. Generating the correlation matrix

Due to its inherent solution structure with rules and facts, the knowledge-based approach should allow the

construction of the correlation matrix easily when the facts are accepted as network devices (elements) and rules

refer to the obvious relations between them. In PROLOG, an ATM switch can be described as “central node

(s1 1, s1)”, implying that it is the first node of unit s1. In a similar manner, devices like band III are defined as

rlA(b1), rlA(b2), rlA(b3), rlA(b4), whereas “rlA(b1)” signifies that band III, named as the b1 device, is in the

network. Band IV devices in the network are presented in the form of rlB(m1), rlB(m2) in the same manner. For

example, two band III devices can make a radio-link connection and this link is formulized as “linkA(bb1, b1,

b3)”. In this representation, it is understood that two devices, namely b1 and b3, have a radio-link connection

through bb1. Similarly, the expression “bagC(mm1, m1, m2)” means that there is a radio-link connection

called mm1 between m1 band IV e and m2 band IV devices [18]. For formulation of realistic scenarios, Table 1

includes some of the facts and associated PROLOG expressions. Rule-based systems use some stated rules to

deduce possibilities of solutions by evaluating the listed facts for predefined topologies. Therefore, there should

be rules as well in order to underline the dynamic structure that may likely produce a chain up to possible fault

sources. These observed rules are summarized in Table 2.

Table 1. Facts and codes of PROLOG defined by topologies.

Fact number Explanation PROLOG codes for the example topology

1

There are some ATM switch santral uc(s1 1,s1), santral uc(s1 2,s1)
nodes connected to some santral uc(s2 1,s2), santral uc(s2 2,s2)
other ATM switch nodes santral uc(s2 3,s2), santral uc(s3 1,s3)

santral uc(s3 2,s3), santral uc(s3 3,s3)

2
There are some band III rIA(b1), rIA(b2)
units in the network rIA(b3), rIA(b4)

3
There are some band IV rIB(m1)
units in the network rIB(m2)

4
Some band IIIs are bagA(bb1,b1,b3)
connected to each other bagA(bb2,b2,b4)

5
Some band IVs are

bagC(mm1,m1,m2)
connected to each other

6

Some band IIIs are bagB(sb1,s1 1,b1), bagB(sb1,s2 1,b3)
connected to the ATM bagB(sb2,s1 2,b2), bagB(sb2,s3 1,b4)
switch in the network

7

Some band IVs are bagD(sm1,s2 2,m1), bagD(sm1,s3 2,m2)
connected to the ATM bagD(sm2,s2 3,m1), bagD(sm2,s3 3,m2)
switch in the network

It is possible to obtain a correlation matrix by using these rules and facts. If the program is activated

based on all required possible alarms of the first scenario, the following table is generated as an output as given

in Figure 8.

The first element gives the fault; the other shows all possible alarms that should be observed for this

fault as assigned by 1. This is of course a perfect basis to construct the correlation matrix for the data set to be

used for any method named in this study. If the alarm vector includes more than one fault than the PROLOG
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then codes generate more than one fault source as a list. For this reason, two different analyses are presented

in Figure 9 as a forced single answer or the answer available among possibilities in the list for each single and

double fault cases. Figures 9a and 9b also summarize the success rate for different levels of noise effects on

results. The rule-based system is forced to produce a single answer for a presented single fault, whereas it

produces two likely sources of double faults for searching the exact results capability. Listed results, on the

other hand, mark the exact fault sources from all possible answers in the list considering to evaluate whether

correct answers are in the list or not.

Table 2. Rules for faults and alarm generations.

Rule number Explanation

1.1
If a fault occurs in the band III unit, then all other connected band IIIs and connected ATM
nodes send alarms

1.2
If a fault occurs in the band IV unit, then all other connected band IVs and connected ATM
nodes send alarms

1.3 If a fault occurs in the ATM device, then connected all ATM nodes send alarms

1.4
If a disconnection occurs between band III units, then all connected band III units and
connected ATM nodes send alarms

1.5
If a disconnection occurs between a band III unit and ATM node, then all connected ATM
nodes send alarms

1.6
If a disconnection occurs between band IV units, then all connected band IV units and
connected ATM nodes send alarms

1.7
If a disconnection occurs between a band IV unit and ATM node, then all connected ATM
nodes send alarms

Figure 8. PROLOG fault possibilities for the first scenario.

4. Discussion and conclusion

This study has concentrated on presenting three methods in a comparative manner in order to assess dynamic

alarm handling capabilities. In simulation results, it is seen that the ANN provides better performance in

comparison with the other implemented methods. It is also observed that performances of both the MDD and

ANN are strongly affected by the complexity of the topology or dynamic variations introduced by considering

new connections. The basic reason for this common disadvantage is that the correlation matrix required by

both methods has to be reorganized for any change in the topology as the ANN also demands a new learning

phase with a newly defined correlation matrix. On the other hand, for the KBS type fault prediction scheme,

introducing only a new device and associated connection knowledge will be sufficient enough to provide the

expected performance with minimum disturbance of the whole process. This experience obtained by this study

will provide a unified frame to analyze the network in terms of fault sources and adaptive network modifications,

as will be reported in future work.
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Figure 9. Correct answers from exact and listed results for: a) single, b) double faults.
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