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Abstract- Spatiotemporal variations in the ionosphere affects can be used for electron density or TEC computations. Global
the HF and satellite communications and navigation systems. Positioning System (GPS) can be used to obtain TEC values
Total Electron Content (TEC) is an important parameter since it with dual frequency receivers. With worldwide GPS satellites
can be used to analyze the spatial and temporal variability of the and receivers TEC computations can be made continuously.
ionosphere. In this study, the performance of the two widely used Due to sparse measurements in space and time accurate and
Kriging algorithms, namely Ordinary Kriging (OrK) and robust estimation techniques are needed to better investigate
Universal Kriging (UnK), is compared over the synthetic data set.
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In order to represent various ionospheric states, such as quiet and t riailt of the vionsphere. Inth study,Orinr
disturbed days, spatially correlated residual synthetic TEC data Kriging (OrK) and Universal Kriging (UnK) algorithms, which
with different variances is generated and added to trend are widely used methods in geostatistics are implemented on
functions. Synthetic data sampled with various type of sampling synthetic TEC surfaces, using the method applied in [1], with
patterns and for a wide range of sampling point numbers. It is additional factors. Synthetic TEC surfaces are generated for a
observed that for small sampling numbers and with higher wide range of variance and correlation distances, with constant,
variability, OrK gives smaller errors. As the sample number linear, second order polynomial, Gaussian surface, and a more
increases, UnK errors decrease faster. For smaller variances in variable spatial trend surfaces. Synthetic TEC surfaces are
the synthetic surfaces, UnK gives better results. For increasing

varinceanddeceasig rngevales,usualy,theerrrs*sampled at a wide range of sample numbers and with variousvariance and decreasng range values, usually, the errors increase regular and random sampling patters. For the regular pattes,
for both OrK and UnK.

square, triangular and hexagonal grids examined in [2] are
I. INTRODUCTION used. For the random patterns uniform, inhibited, Poisson

Ionosphere is a dispersive, temporally and spatially varying cluster point processes are generated as in [1]. For different
medium. This dispersive property of the ionosphere affects the sampling patterns, trend functions, variance and range values,
performance of High Frequency (HF) and satellite communica- performance of both OrK and UnK interpolation methods is
tion and navigation systems. In HF communication, by using compared. It is observed that for the regular sampling patterns,
the reflection of electromagnetic waves from the ionospheric OrK and UnK give similar errors, but when the sampling is
layers, communication through long distances can be made random, the method which assumes a wrong trend model has
possible. The frequency at which the wave is reflected from the the largest errors. For the constant and the most variable trend,
ionospheric layers is a function of electron density. Electron OrK has smaller errors, while for the other trends, generally,
density depends on many factors such as solar activity, geo- UnK has the smaller errors. For the increasing variance and
magnetism, latitude, local time and altitude. For the satellite decreasing range values, generally, error increases for all trends
systems, as the signals travel through the ionosphere, due to the except the more variable trend funtion. For the constant trend,
changing refractive index, the signals are refracted and a delay OrK gives smaller errors than UrK, but as the sample number
error is observed in the received signal. For a better accuracy increase, UrK errors get closer to OrK errors more rapidly than
in the navigation systems and a continuous and qualitative the OrK errors do for the scenarios in which UnK gives smaller
communication, variability of the ionosphere have to be errors than OrK.
monitored continuously and corrections have to be made by In Section II, the random function model, which is a widely
using the gathered information. used model in many fields such as geology, geophysics,

Total Electron Content (TEC), which is defined as the environmental sciences, is defined. OrK and UnK algorithms
number of free electrons in a cylinder of tin2 cross section, are given in Section III and implementation method and
can be used to investigate the ionospheric variability. The unit comparisons are given in Section IV and Section V.
Of TEC is given in TECU where 1 TECU =10'6e11m2.
Jonosondes, incohorent backscatter radars, and satellite systems
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II. RANDOM FUNCTION MODEL In the above equation cov(.) is the covariance function. When
Due to the variations in the solar activity, geomagnetic the stationarity assumptions are not satisfied the random

storms, latitude, longitude and time, it necessary to have a function can be thought as the sum of a zero mean stationary
statistical model. In environmental sciences, geology, random function Y(x) and a trend u(x) which is a function of
hydrogeology, spatiotemporal models are used to investigate coordinates [3].
the behaviour of processes in nature which shows variability
both in space and time. A finite domain in space and a finite Z(x) = ,u(x) + Y(x) (5)
domain in time can be defined as, De Rd and T e R,
respectively. TEC can be modeled in space and time as a In the above equation u(x) = E{Z(x)} can represent the trend
random function {Z(x, t),x e D, t e T}, where Z(x, t) is a in TEC values depends on space coordinates and Y(x) can

random variable at x = [0 ]T , where 0 latitude, 0 represent the variation above this trend function. Since distinct
longitude and at time t . For an instant of time, the region measurements related to u(x) and Y(x) are usually not
where TEC will be estimated, can be defined by a grid of available, physical information about the ionosphere can be
N0NO points, which has No points in latitude and No points used to estimate the structure of the trend functions.

in longitude. Points can be indexed by 1< no < NO in latitude III. KRIGING INTERPOLATION METHOD
and I<no,<No in longitude. The lexicographical index Kriging is a widely used interpolation technique in
I = no + (no -l)N9 provides a mathematical ease to handle two geostatistics. It is first applied to mining, to estimate the ore
dimensional matrix by resizing it into a one dimensional vector grades in a mining block by D.G. Krige. Kriging linearly
NON1.Similarly, measurements at points .

, , = 1... N estimates the process by minimizing the error variance with
a ' aeasus arespect to an unbiasedness condition. It also known as the Best

can be defined by the vector dN xl. Mapping or interpolation Linear Unbiased Estimator (BLUE). A more detailed
can be considered as the problem of estimating the values in information about Kriging and geostatistics can be found in [4]
g,\ xl at grid points from the measurements dNxI. to [6]. Geostatistics assumes that points close in space tend to

Estimations at te grid points ca be given byth estimation have close values. So Kriging first preprocesses the data to
Estimations at the grid points can be given by the estimation infer the structure of variability of the random function.
vector: Experimental semivariogram which is the half of the variance

rT
of values at a constant distance apart is used for this purpose

Zs =[Zs(1)... Zs (1).. Zs (NN)]TXNO p (1) [4]. Calculation of experimental semivariogram from the data
points is given as:

where Z5 (1) is the estimation for the Ith grid point. The N(h)
random function Z(x) is said to be strictly stationary if r* (h)= 2 L[Z(Xi) - Z(Xj)12 (6)
multivariate cumulative distribution function is invariant by 2N(h) i#j
translation h . Since it is not possible to assure that this
property is satisfied at all points, the statistical structure of the In the above equation h shows the distance lag between data
random function can be inferred from the set of point pairs h points. Z(xi) and Z(xj) are the TEC values at points xi and
distance apart. In geostatistics, intrinsic stationarity, which is xj, respectively. N(h) is the number of point pairs with a
less demanding than the second order stationarity assumption, distance lag h. Experimental semivariogram have to be fitted
is employed for this purpose. An intrinsic stationary random to a theoretical semivariogram function model ~(h).Kriging
function satisfies the below equations [6].

estimate is the linear combination of values at measurement

E{Z(x) - Z(x + h)} = m(h) (2) points. The estimation on the fth grid point defined in (1) is

var{Z(x)-Z(x+h)}= 2Ah) (3) given in (7) for Na measurement points.

I
Na

In the above equations E{} and var{.} are the expectation and Zs(/)= wl;n Z(xn,), I= 1.. N6NO (7)
variance operators, respectively. m(.) is the drift function and nl=1
y(.) is the semivariogram function. In geostatistics, points that In (7), w;n, , for 1 < n, < Na,, are the Kriging coefficients for
are close to each other are assumed to have similar values so the Ith grid point.
generally the drift function is taken as zero [6]. When the In Ordinary Kriging (OrK) a constant trend function is
second order stationarity is satisfied, semivariogram and assumed. If the random function is intrinsic stationary the
covariance functions are related by the below equation. constant trend does not need to be known. For unbiased

estimation the coefficients have to satisfy (8).
y(h) = cov(0) - cov(h) (4)
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E Wn, =1 (8) 4 (X) =al4+ exp - 04 ) - 04 (15)
na =K a24 a34

Universal Kriging assumes a trend which is a linear 2 2
combination of known functions with unknown coefficients as _5 (X) al5+ exp -( a ) ( 5) (16)

in (9). ~~~ ~ ~~~~~~~~~~~~~a25a35
Nk

,u(x) = EtZ(x)}= E a, fnk (x), f1 (x) (9) ,u(x) = a16 cos2 9 + a26 sin2 0 - exp(a36(cos 0 + cos )) (17)
In~~~~~~n(9)a61X=<16Co Na2 sin-h expow trend (COSefficients17

In (9), ank , 1 k NkI are the unknown trend coefficients, The coefficients ofthe trend functions given by (12) to (15) are
fn (x) are the known functions which are generally chosen as chosen such that the functions represent the TEC values for a
monomials to form a polynomial trend. For unbiased quiet day of the ionosphere for different time instants for a day
estimation, the coeffiient havetolynomsatisfye. Foand to represent a trend from north to south. Trend functions

estimation, the coefficients have to satisfy (10). (16) and (17) represent a disturbance in the grid of interest. The
N, center of the Gaussian function in (16) is in the middle of the
E WI;n, fnk (x) = fnk (XI) for nk = 1,.. ., Nk (10) grid, while that of (15) is below the south of the grid. Minimum
n, =1 and maximum of the TEC values are 15 and 25 TECU,

respectively, in all trend functions.
Estimation variance for the Ith grid point can be given by (11). Cholesky Decomposition, which is a geostatistical data

simulation technique [4], is used to simulate a zero mean,
N, N, Nb Gaussian, spatially correlated random function Y(x) as in (5).

7-=2 w,n, r(xn,,)=-1Win Wnfr(x, Xn ) (11) The variance and range of correlation is determined by an
-1=l na=lnb=l exponential covariance function in (18).

For both OrK and UnK, coefficients can be estimated with the
Lagrange multiplier method by minimizing the estimation error cov(h) =&hl exp - (18)
variance while satisfying the unbiasedness constraints [4], [5]. y a )
The needed semivariogram values between the points can be
calculated from the fitted theoretical semivariogram function. 2
The spatial interpolation performances of OrK and UnK For the varance o ofthe resdual random function Y(x), one
algorithms will be compared on the synthetic TEC surfaces in of the 0.64, 1.44, and 2.56 values is chosen for different
the next section. variability levels. For a wide range of correlation distances the

values 5, 10 or 15 are chosen for the range a of the residual
IV. SYNTHETIC TEC INTERPOLATION random function.

Since a complete forward model of the ionosphere does not Sampling points are located regularly as square, triangular and
exist and since the measurements both in space and time are hexagonal grids [2], and randomly as uniform, inhibited and
sparse, it is necessary to test the performance of the clustered [1], for different sampling numbers 20 (7.6%), 30
interpolation techniques first with synthetic surfaces. In this (11.4%), 40 (15.2%), 50 (19.0%), 60 (22.7%) and 70 (26.5%).
section, a comparison of the performance of OrK and UnK In each scenario, residual synthetic TEC data Y(x), is
algorithms on synthetic TEC surfaces is given by using a generated at the grid points and the sampling points, for each
similar method followed by [1] and for an additional sample option of the sampling pattern, sample number, variance U2
number factor and for various trend types. A grid, defined i and range a. Then Y(x) is added to the one of the possible
Section II, is chosen on the midlatitude region, for No = 11, trend functions u4x). 10 realizations of each scenario are

=2 corsodn to N'Ntr264 inctontotal, wit 10lztos fec ce r
No = 24 corresponding to NON = 264 points in total, with l generated. Kriging methods OrK and UnK with a second order
resolution both in latitude and longitude. For various polynomial trend are used for estimating the synthetic TEC
ionospheric states such as quiet and disturbed days, trend values at grid points g, from the values at sampling points d
function in (5) can be chosen as: and generating the estimation vector zi given m (1). For both

pi (X) = all (12) of OrK and UnK, the semivariogram function is calculated by
using a known covariance function, as in (18). For each

/2 (X) = aL12 + a220+ a320 (13) realization of a scenario, the normalized error is given by

/13(x)=a13 +a230+a330f+a4302+a530@+a630b (14) gs(19)
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The average normalized error (£n) for one scenario is the
average of the normalized errors for all realizations of the 22 10x UKV-0n
scenario. The performance of UnK with respect to OrK is 2- E--r 2 E

evaluated with a relative error £r criteria: 1.8

£ n _() )a Xl (20) 12 - 1 2

en )av h1

0.6 M 0.6

20 30 40 50 60 70 20 30 40 50 60 70
When UnK gives smaller errors, 6r becomes negative, when a Sample number ) Sample number
UInK gives larger errors Fr becomes positive. Table I. shows Fig. 1. Errors for constant and linear trends.

the typical maximum -r values for all trends when the sample
number increases, for a regular square sampling pattern and a 4.5 ° 1.5

T~~~~~~-EF-- OrK -EF-- OrK
random uniform sampling pattern. 4 -UnK TUnK

3.5 EZ
TABLE I

Typical maximum relative errors as the sample number increases 1
Sampling Pattern 2 \

Trend Function Regular (Square) Random(Uniform) 2
L A(x) 5% to 0%0 90% to 100%105 X
,u(x) +~~~~~~5%to 0% -50% to -30% 1 o 5,t2 0Xt 020 30 40 50 60 70 20 30 40 50 60 70

113 (X) -30% to -2% -80% to -50% a Sample number h ) Sample number

0jU4(X) ±15% 55% to -30% Fig. 2. Errors for ,U3(X), when72 = 0.64 and 072 = 2.56

[ 5(X) -40% to 0% -50% to -15% l When the sampling is random, for uniform and inhibited
6(X) ±10% to ±2%0 70% to 5%0 samplings the UnK errors are similar to the error values when

the sampling is regular, but OrK errors are larger than error of
For trends, except 1U6(x), for increasing variance and OrK with regular sampling. For the cluster process and small

decreasing range values, average normalized error increases, variance values, UnK errors are smaller than OrK errors.
but for the trend function ,u6 (x), there is no significant change When the trend is Gaussian, and the center of the Gaussian
with variance and range due to the variability of the trend itself surface is on the south of the grid as in/U4 (x), for the regular

For the constant trend, /11(x), with regular sampling sampling patterns, OrK errors are similar to UnK errors and
patterns, LnK gives, maximum 50 larger errors than OrK. As OrK gives usually slightly smaller errors; For the random

the sampling number increases, UnK gives similar errors with sampling patterns, the error for OrK, £r, decreases from 55%
OrK. For random sampling patterns, with constant trend, UnK to 300O. Errors for trends IU3(x) and IU4(X) is given in Fig. 3.a
gives maximum 9000 larger errors than OrK gives. As the and Fig. 3.b, respectively, for uniform sampling, o2 = 1.44,
sample number increases, UnK gives 10% larger errors than a=10.
OrK does.

For thes. lnated/()wiheuasmlnptrsFor the trend ,15 (x), when the center of the grid coincides with
the center of the Gaussian curve, errors for the OrK decrease

relative error £r takes as extreme values +5%0 and both OrK from 400 to 00 for the regular sampling and decrease from
and UnK give similar errors; For random sampling patterns, 50% to 15% for the random sampling patterns. As the sample
UnK gives, maximum 50% smaller errors, as the sample number increases in regular sampling OrK becomes similar to
number increase, UnK gives maximum 300/ smaller errors. UnK, but for the random sampling UnK still gives 15% smaller
Errors for trend functions /ul(x) and /U2(x) is given in Fig. l.a errors. For the more variable trend 1U6(x), for regular sampling

and Fig. l.b, respectively, when variance cr2 = 1.44, range patterns, both OrK and UnK give similar errors with maximum
a = 5 and for inhibited sampling. 10% difference; For random sampling patterns, the error for
For the second order trend /U3(X)I for regular sampling, the OrK decrease from 70% to 5%. In Fig. 4.a and Fig. 5.b,
error for the OrK, Er~decreases from 300 to 200 with the average normalized errors versus sample number is given for

increase in sample number; For random sampling these values /15(x) and 16(X), respectively, when .2 = 0.64, a = 10 and
becomes 80% to 50%, respectively. As the variance increases for uniform sampling.
both OrK and UnK give similar errors. The errors for the trend
/13(X), for variances & =0.64 and & =2.56, are given in
Fig.2.a and Fig.2.b, respectively, when a =10, and for square
grid sampling.
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2.5X1o 3 2.5x 10 also interesting that, for the Gaussian surface trend ,U4 (x), the
[--UnK [ --UnK
EF---D--OrK EX ---D-- OrK interpolation errors for UnK with random sampling is smaller2 t 2than that of OrK. Yet for regular sampling, OrK results in

better reconstruction. As the variability of the surface increase,
interpolation with OrK is better.

1 X 5- i iSS1 X- tEt3 -{3 In the future studies, the space-time variation of the

ionosphere will be captured using Kalman-Krige filters.
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error values smaller than the errors obtained with random
sampling patterns. Among the random sampling patterns,
inhibited sampling pattern gives the smallest errors, while the
clustered sampling pattern gives the largest errors. For the
constant trend, UnK errors can approach to OrK errors more
rapidly than OrK does for linear or second order trends, as can
be seen in Fig. 1., for the linear trend. It can be seen from the
Table I., that for regular sampling patterns, errors of both OrK
and UnK are closer to each other relative to random sampling
patterns.

V. CONCLUSION

In this study, performances of widely used spatial
interpolation algorithms in geostatistics, are compared on
synthetic TEC surfaces, which represent the various states of
the ionosphere. OrK and UnK are run for simulated surfaces
for both regular and random sampling patterns using a wide
range of sample numbers. The errors between the original
surfaces and the interpolated surfaces is measured using
averaged normalized differences.

It is observed that, for the constant ,ul(x) and the variable

/U6(x) trends OrK gives smaller error values, while for the
other trends, usually, UnK gives smaller errors. When regular
sampling patterns are applied, the interpolation errors for both
OrK and UnK are similar to each other. When the synthetic
surfaces are sampled with random methods, the interpolation
error ofOrK and UnK differ from each other. The interpolation
errors are smaller for constant surfaces when OrK is used. In
general interpolation errors decrease with increasing sampling
number for both methods. Yet, the errors converge faster for
OrK than UnK for the constant trend, and the convergence rate
of UnK is generally faster when compared to that of OrK. It is
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