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[1] Total Electron Content (TEC) is an important parameter in monitoring ionospheric
variability. In a given region, TEC can be obtained only by interpolation of
measurements due to sparsity of the useful data. The lack of a complete ionospheric model
hinders the choice of the optimum interpolation algorithm. A plausible solution to this
problem can be found by investigating the performance of alternative interpolation
algorithms on synthetically generated TEC surfaces for various sampling scenarios. The
synthetic TEC data should represent the possible trends and variations of ionosphere.
In this study, the performance of Random Field Priors (RFP) and Kriging interpolation
algorithms are investigated over the parameter set of spatially correlated synthetic
TEC data for various variance, range and trend options. Synthetic TEC data are sampled
with regular and random sampling patterns, for number of samples from sparse to dense
samplings. Interpolation scenarios are generated to investigate the improvement of the
interpolation accuracy of the methods for each parameter. It is observed that for the
random sampling patterns, when the trend is not modeled correctly, the errors of
the algorithms increase and when the trend is modeled correctly, the reconstruction
errors decrease. For the regular sampling patterns, the trend model does not affect
the accuracy of the methods, and the reconstruction errors are close to lower bound error
values. An example reconstruction is also provided over GPS-derived TEC, and error
variances are compared over Kriging and Random Field Prior algorithms.
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1. Introduction

[2] Ionosphere is the layer of the Earth’s atmosphere
that is dominated by a dispersive, temporally and spa-
tially varying ionized plasma. Robust, reliable, and
accurate imaging and monitoring of the ionosphere is a
major challenge in performance improvement of commu-
nication and navigation systems. Total Electron Content
(TEC) is a key parameter in investigation of the iono-
spheric variability. TEC is defined as the line integral of
electron density along a ray path or as a measure of the
total number of electrons along a path of the radio wave
[Budden, 1985]. The unit of TEC is given in TECU
where 1 TECU = 1016 el/m2. TEC is a derived quantity

and it is a function of electron density and the chosen ray
path. TEC can be computed using the measurements and
recordings of the vertical ionosondes both bottom-side
and top-side, Faraday Rotation of satellite signals such
as GLONASS and EISCAT, TOPEX/POSEIDON and
JASON satellites with double frequency altimeters, GPS
phase and delay recordings and incoherent backscatter
radar signals [Komjathy, 1997]. In recent years, Global
Positioning System (GPS) dual frequency signals are
widely used to estimate both regional and global TEC
values [Schaer, 1999]. In GPS-TEC computation, TEC
on the slant ray path from the satellite to the receiver is
called the slant TEC (STEC). When the STEC values are
projected to the local zenith at the ionospheric pierce
point, assuming the thin shell model of the ionosphere
with a mapping function, the computed TEC value is
called the vertical TEC (VTEC) [Arikan et al., 2003,
2004, 2007; Nayir et al., 2007]. In this study, the total
electron content over the receiver station in the local
zenith direction is denoted by the term TEC. Owing to
the sparsity of TEC values obtained from the above listed
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sources in time and space, accurate and robust interpo-
lation of TEC for every desired location in a given region
is a very challenging problem. The estimation of TEC
values on a dense grid using the limited set of computed
TEC is called TEC mapping [Hanbaba, 1999; Sayin,
2008].
[3] In the literature, there are various interpolation

methods applied to ionospheric TEC mapping. A brief
list includes Inverse Distance Weighting (IDW) [Jin et
al., 2004], Multiquadric function fitting (MQ) [Wielgosz
et al., 2003], Thin Plate Spline (TPS) [Moon, 2004],
Spherical Harmonics (SH), Kriging (KG) and Neural
Networks (NN). All of the above listed methods have
both advantages and disadvantages. For example, IDW,
MQ and TPS methods have low computational complex-
ity and they are easy to implement. Yet, these methods
do not include any statistical or background information
on the nature of the ionosphere. SH is widely used in
global mapping. The basis functions of SH span the
whole surface of the globe and they have to be modified
for regional TEC mapping [Schaer, 1999; Moon, 2004;
Lazo et al., 2004]. NN has higher computational com-
plexity than the other above mentioned methods, and it is
known as universal function approximator [Gurun,
2007]. When extrapolation is considered, NN provides
a very powerful alternative [Leandro, 2004]. NN is
applied to mapping of various ionospheric parameters,
yet it is very difficult to decide on the optimum neural
structure and its appropriate learning algorithm when it is
applied to real ionospheric data [Gurun, 2007]. Also, NN
requires a preprocessing stage to prepare the training and
testing data sets, a process that increases the computa-
tional and implementation complexity.
[4] KG is a widely used spatial interpolation method in

environmental sciences [Cressie, 1993]. It is known as
the Best Linear Unbiased Estimator (BLUE). Kriging
extracts the variability and spatial correlation structure of
the surface from the measurement data [Sayin, 2008;
Sayin et al., 2007]. Where IDW, MQ and TPS uses only
the geometric location of the samples to estimate the
desired variable, KG also makes use of both the param-
eter value at the sample points and the covariance
structure of the sample points [Chiles and Delfiner,
1999]. Kriging gives the estimation error variance from
which confidence bounds can be obtained [Blanch,
2002]. KG has been applied to TEC mapping in the
literature. In the study of Wielgosz et al. [2003], the TEC
maps obtained with KG and MQ for the day 29 April
2003 and from the measurements of five stations in Ohio,
are compared with the Global Ionospheric Maps (GIM)
of International GPS Service for Geodynamics (IGS)
centers (ftp://cddisa.gsfc.nasa.gov/gps/products/ionex/).
It is noted that both MQ and KG maps are similar to
each other and TEC estimates from these two methods
are generally less than those of GIM in value. In the

work of Wielgosz et al. [2003], both MQ and KG
methods are found to be suitable for sparse samplings,
and MQ method is concluded to be more suitable for real
time applications due to lower complexity compared to
KG. In the work of Orús et al. [2005], accuracy
improvement of Technical University of Catalunia
(UPC) GIM with Kriging is proved by comparing the
standard deviation and root mean square of the difference
from the TOPEX/Poseidon-derived TEC for December
2002, and 0.3 TECU improvement in the standard
deviation of the difference is noted. In the study of
Stanislawska et al. [2002], Kriging is applied to real
ionospheric data for quiet and disturbed days and the
difference in the structure of the ionosphere is observed.
Yet, there is no detailed study in the literature on the
optimum performance parameters and models of KG for
TEC mapping.
[5] Random Field (RF) model provides a space-time

stochastic description of ‘‘disturbed disordered system’’
as given in the study of Vanmarcke [1983]. In the work
of Vanmarcke [1983], various applications of RF to fields
such as geostatistics, environmental sciences, economic
risk management are discussed over the statistical model
of the random variable. With the assumption that the
measurement and estimation data sets have joint Gauss-
ian distribution, Random Field Priors (RFP) method
described by Vanmarcke [1983] provides unbiased and
linear estimates under the minimum variance criterion.
Also, RFP is capable of modeling the space-time struc-
ture of the random field and produce accurate interpola-
tions, if a priori correlation matrix structures of the
measurement and the field are provided. If the method
is applied only for spatial interpolation, the a priori
information corresponds to the mean or the trend in the
covariance matrices. The RFP model has never been
applied to ionospheric mapping before, yet with the
strong underlying stochastic structure and the ease of
implementation for both space and time estimation,
makes it a very strong alternative to other mapping
algorithms.
[6] In the interpolation problem, the sparse values of

TEC, taken over time and space samples, are connected
with certain algorithms and missing values are recon-
structed. In order to decide on the optimum interpolation
method, it is a necessity to compare the performance of
the mapping algorithms as a function of their respective
parameters for reliable, robust and accurate TEC maps.
The performance of the interpolation algorithms can not
be determined accurately over real measurement data due
to the fact that exact value of TEC for a point in space
and time is not known precisely. TEC is a derived
quantity and a proper space-time model of the iono-
sphere does not exist. It is very important to compare the
performance of interpolation algorithms on synthetic
TEC surfaces where all the parameters and sample values
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are controlled and analyzed. This way, under the pre-
determined error criterion, the reconstruction errors for
various mapping algorithms can be determined a priori
as a function of trend and variability in TEC, number of
samples, and sampling pattern. Although, TEC maps can
be produced as listed above, the degree of accuracy of
those maps are not thoroughly investigated.
[7] The major goal of this study is to analyze the

performance of Kriging and RFP algorithms over syn-
thetic TEC surfaces in space for a given time. The
synthetic TEC surfaces are generated by investigating
the spatial trends of TEC in Global Ionospheric Maps
(GIM). The performance parameters of KG and RFP
algorithms are chosen to be the deterministic surface
trend plus a statistical small scale disturbance, the
sampling pattern type, and the number of samples. In
this study, TEC maps are obtained by using GPS-TEC
as the input to KG and RFP reconstruction algorithms.
A comparison over the reconstructions and error var-
iances are also provided. With this study, the optimum
interpolation algorithm for a given surface, number of
samples and sampling pattern can be chosen and can be
compared with the sub-optimum algorithms. The per-
formance improvement over varying parameters can be
determined and cost-effective measurement schemes can
be developed.
[8] In section 2, the synthetic TEC surface generation

and interpolation scenarios are provided along with a
general review of KG and RFP algorithms. In section 3
the results of the synthetic TEC interpolation simulations
are given and the Interpolation methods are applied to
real ionospheric data. The conclusions are in section 4.

2. Regional Synthetic TEC Interpolation

With KG and RFP

[9] Ionosphere varies as a complex function of solar
and geomagnetic activity, latitude, longitude, and time.
These variations in space and time are generally made
up of a deterministic trend and a variable scale statistical
model. For example, ionosphere has an underlying
diurnal and sunspot cycle periodicity in time, and
east-to-west and north-to-south gradients in space. Iono-
spheric disturbances due to geomagnetic and solar
activities can alter the underlying trend with an additive
random variation. TEC can be modeled as a random
field in space and time, Z(x, t), composed of a zero
mean stationary random function Y(x, t) and a deter-
ministic trend m(x, t) as

Z x; tð Þ ¼ m x; tð Þ þ Y x; tð Þ ð1Þ

In the above equation x = [q f]T, where q denotes
latitude, f denotes longitude and (�)T is the transpose
operator. m(x, t) = E{Z(x, t)} represents the trend in TEC,

and it is generally modeled as a linear combination of
known functions such as monomials. E{�} is the
expectation operator. Y(x, t) represents the variation
above m(x, t). Since distinct measurements related to
m(x, t) and Y(x, t) are usually not available separately,
observations in ionospheric physics can be used to
estimate the structure of the trend functions. The space-
time structure of the ionosphere can be divided into
separate space and time functions due to the fact that
these variations tend to have distinct trends of their own.
In this study, we will concentrate on interpolation of
TEC over space. Joint space-time estimations will be
covered in follow-up study.

2.1. Interpolation Scenarios

[10] The synthetic TEC surfaces, gs, are generated on
a dense grid defined in a region from qi � q � qf
and fi � f � ff divided into Nq points in latitude and
Nf points in longitude. The lexicographical index l = nq +
(nf � 1)Nq provides a mathematical ease to handle the
spatially distributed TEC values by ordering them in a one
dimensional vector as gsNqNf�1

, where gs is defined as:

gsNqNf�1
¼ gs 1ð Þ . . . gs lð Þ . . . gs NqNf

� �� �T
1�NqNf

ð2Þ

where gs(l) denotes the TEC value at the lth grid point.
[11] For Na measurements or sample points, the mea-

surement vector is defined as

dNa�1 ¼ d 1ð Þ . . . d nað Þ . . . d Nað Þ½ 
T1�Na
ð3Þ

where d(na) is the measurement value at the na
th

measurement point. In this study, the measurement
points are taken either from gs or GPS-derived vertical
TEC. Mapping or interpolation can be considered as the
problem of estimating gs, from d. TEC estimates from
the KG and RFP algorithms at the grid points can be
given by

ẑs ¼ Ẑs 1ð Þ . . . Ẑs lð Þ . . . Ẑs NqNf
� �� �T

1�NqNf

ð4Þ

where Ẑs(l) is the estimate for the lth grid point. In this
study, the regional TEC map grid is formed for Nq = 11
and Nf = 24. The spacings in latitude and longitude are
chosen to be 1�. Such a grid is large enough to represent
Central Europe. The chosen spatial resolution is higher
than those of IGS-GIM, which is 5� in longitude and 2.5�
in latitude.
[12] The trend structure for the synthetic TEC surfaces

are formed by the following six functions

m1 xð Þ ¼ 18 ð5Þ
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m2 xð Þ ¼ 33:18� 0:3qþ 0:3f ð6Þ

m3 xð Þ ¼ �44:61þ 2:96qþ 0:66f� 0:033q2 � 0:033f2

ð7Þ

m4 xð Þ ¼ 38:06� 0:43q

þ 8:66 exp � q� 53

15

� �2

� f� 9:5

10

� �2
 !

ð8Þ

m5 xð Þ ¼ 1þ 5 exp � q� 53

7

� �2

� f� 9:5

10

� �2
 !

ð9Þ

m6 xð Þ ¼ 21:09þ 6:01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 q� 53ð Þ þ sin2 f� 9:5ð Þ

q
� 6:01 exp 0:25 cos q� 53ð Þ þ cos f� 9:5ð Þð Þ½ 


ð10Þ

The coefficients of the trend functions given by
equations (5) to (8) are chosen to represent the trends
in the TEC distributions for a quiet day of the ionosphere
for different time instants in a day. Trend functions given
by equations (9) and (10) represent a severe disturbance
or variation of TEC. An example of these synthetic
trend functions and GIM maps is provided in Figure 1.
Figures 1a, 1c, 1e, and 1g are the chosen trend functions to
represent constant, linear, second order, and gaussian
trends. Figures 1b, 1d, 1f, and 1h are extracted from GIM
maps corresponding to those trends in the left column for
different days and hours.

Figure 1. Trends used in the generation of synthetic TEC surfaces (a) constant, (c) linear,
(e) second order, and (g) Gaussian are compared to their GIM equivalents in (b) 1 April 2003
0200 UT, (d) 1 April 2004 1000 UT, (f) 23 May 2004 1200 UT, and (h) 1 April 2004 0000 UT.
Latitude is in degrees.
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[13] For a better comparison of the agreement of the
synthetic TEC surfaces with the trends in GIMs, TEC
values for a fixed latitude and longitude are provided in
Figure 2. Figures 2a, 2c, 2e, and 2g are TEC values for a
constant latitude, corresponding to the synthetic TEC and
GIM values in Figure 1. The solid line represents syn-
thetic TEC and the dashed line represents GIM-TEC. In
Figures 2b, 2d, 2f, and 2h are the TEC values
corresponding to the synthetic TEC and GIM values in
Figure 1, for a fixed longitude. Figures 2a and 2b
correspond to the trend in Figures 1a and 1b. Figures 2c
and 2d correspond to the trend in Figures 1c and 1d.
Figures 2e and 2f correspond to the trend in Figures 1e
and 1f. Figures 2g and 2h correspond to the trend in
Figures 1g and 1h. As it can be observed from Figure 2,
the chosen synthetic trend surfaces are in excellent
agreement with those from GIM.
[14] The small scale variations on the trends are

generated using Cholesky Decomposition method
[Sayin, 2008; Cressie, 1993]. An exponential covariance

function is used for generating the small-scale variability
of the TEC surface as

covY hð Þ ¼ s2 exp
�jhj
a

� �
ð11Þ

where covY(h) is the covariance of the TEC values at two
points, separated with the distance lag h. The variance s2

determines the dispersion of the values and the range a
determines the correlation between the values of different
points. To represent different states of the ionosphere, the
variance s2 is chosen from the set 0.64, 1.44, and 2.56 as
the residual variance of GPS-TEC when IRI model is
assumed as the trend. For the range a denoting the
correlation distance of Y(x), 5, 10 or 15 are chosen to
represent lowest to highest correlation between the
points. On a very quiet day, ionosphere can be modeled
by using s2 = 0.64 and a = 15. A disturbed ionosphere
on the other hand may have a large s2, and small a. The
assessment of the performance with various interpolation
algorithms over the generated surfaces require the

Figure 2. Comparison of synthetic TEC surfaces (solid lines) and GIMs (dashed lines) from
Figure 1 for a fixed latitude in Figures 2a, 2c, 2e, and 2g and for a fixed longitude in Figures 2b, 2d,
2f, and 2h.
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mapping algorithms to be run over various realization of
surfaces having the same trend m(x), variance s2 and
range a.
[15] For the sampling of synthetic TEC surfaces,

regular and random patterns are used. Regular sampling
structure use square, triangular and hexagonal distributed
sample points. Random sampling patterns are chosen as
uniformly distributed, inhibited and clustered as in the
works of Sayin [2008], Yfantis et al. [1987], and
Zimmermann et al. [1999]. The sparse GPS-TEC mea-
surement points are often in the structure of inhibited or
clustered. For example, there is a large cluster of GPS
stations over land regions such as Central Europe and
there are vast spaces over seas and oceans where there are
no stations.
[16] The interpolation accuracy is expected to increase

as the number of samples increase, yet as the number of
samples (corresponding to measurements) increase, the
computational complexity of the algorithms also in-
crease. Thus, it is important to find a threshold after
which a significant improvement in the interpolation
performance do not occur with increasing number of
samples and keeping computational complexity to a
minimum. The number of sampling points used in this
study out of 246 grid points are 20, 30, 40, 50, 60 and
70, corresponding to 7.6%, 11.4%, 15.2%, 19.0%,
22.7% and 26.5% of the total number of grid points,
respectively.

2.2. Kriging and Random Field Prior Mapping
Algorithms

[17] Kriging is a widely used interpolation technique
that linearly estimates the process by minimizing the
error variance with respect to an unbiasedness condition.
Kriging estimate is the linear combination of the values
at measurement points as

Ẑs lð Þ ¼
XNa

na¼1

wl;naZ xnað Þ ð12Þ

where wl;na, for 1 � na � Na, are the Kriging coefficients
for the l th grid point. Kriging algorithms, generally,
assume the trend m(x) in the random function as a linear
combination of known deterministic functions, fnk(x) as

m xð Þ ¼ EfZ xð Þg ¼
XNk

nk¼1

ank fnk xð Þ; f1 xð Þ ¼ 1 ð13Þ

where ank, 1 � nk � Nk, is the unknown trend coefficient.
For unbiased estimation, the coefficients w have to
satisfy the unbiasedness condition as

XNa

na¼1

wl;na fnk xnað Þ ¼ fnk xlð Þ; nk ¼ 1; . . .Nk ð14Þ

The Kriging interpolation algorithm can be applied on
various assumptions of the trend m(x). When the trend is
assumed to be constant, corresponding to Nk = 1, the
interpolation is called Ordinary Kriging (OK). When
Nk > 1 the method is called Universal Kriging. In this
study, the Universal Kriging algorithm which assumes
a linear trend, corresponding to Nk = 3 (UK1) and the
Universal Kriging which assumes a second order trend
corresponding to Nk = 6 (UK2) are chosen to be the
mapping algorithms along with OK.
[18] Random Field Priors (RFP) interpolation model

allows multivariate and/or multidimensional estimation,
given that the first and second order statistics are known.
For TEC mapping, the first order statistic corresponds to
the mean or trend function and the second order statistic
corresponds to the covariance function of the multivar-
iate random field [Sayin, 2008]. In our implementation of
RFP for spatial interpolation of TEC at a given time
instant, the mean TEC surface, the covariance and cross-
covariance matrices of the gs and d vectors are assumed to
be known. For interpolation of real data, these covariance
and cross-covariance matrices can be obtained from an
empirical ionospheric model such as IRI or from past
data on the ionospheric parameters such as GIM. When a
constant or a low order variation in the trend is chosen,
the performance of RFP in this study will be similar to
Simple Kriging. When a highly varying trend is tried,
this similarity will cease to exist yet for all cases RFP
will form a minimum error bound for OK, UK1 and UK2
[Sayin, 2008; Olea, 1999].
[19] The exponential covariance function given in

equation (11) is used in both KG and RFP algorithms.
The semivariogram function that is necessary for recon-
struction using Kriging and in evaluating error variances
is computed as

g hð Þ ¼ cov 0ð Þ � cov hð Þ ð15Þ

as given by Olea [1999] for isotropic random functions.
cov(�) is the covariance function in equation (11). h is the
distance between two sample points in space. In the next
section, we will explain the results of interpolation
scenarios.

3. Results and Discussion

[20] In this section, spatial interpolation performances
of RFP, OK, UK1 and UK2 methods are compared first
on synthetic TEC surfaces over the important perfor-
mance parameters and then, these interpolation algo-
rithms are applied to GPS-TEC data.

3.1. TEC Mapping Over Synthetic Surfaces

[21] The synthetic TEC surfaces are generated for six
trend functions in equations (5) to (10). Small scale

RS5012 SAYIN ET AL.: TEC MAPPING WITH RFP AND KRIGING

6 of 14

RS5012



variations are generated and added on the trend functions
for all nine combinations of s2 and a. Six sampling
patterns, and six different number of samples are used in
generating scenarios. For each surface scenario, four
interpolation algorithms are applied. The total of 7,776 =
[6 (trend functions) � 3 (s2 values) � 3 (a values) �
6 (sampling patterns) � 6 (number of samples) � 4
(interpolation algorithms)] interpolation scenarios are
generated. The generation of Y(x) using one set of s2

and a corresponds to one realization of the small scale
variations over the trend. For statistically meaningful
reconstructions, for each set of s2 and a, Nr = 10
realizations are generated. The reconstruction errors are
computed using the average normalized error (ANE)
criterion. First, the normalized error for each realization
is computed as

�n ¼
k ẑs � gs k2
k gs k2

ð16Þ

where k � k is theL2 norm defined by kgsk2 =Si = 1
N [gs(i)]

2.
The ANE, (en)av, of one scenario is the average of the

normalized errors over Nr realizations of that scenario,
as

�nð Þav¼
1

Nr

XNr

i¼1

�n ið Þ ð17Þ

where en(i) is the normalized error obtained from the
ith realization.
[22] The ANE from each interpolation scenario is

investigated and analyzed by keeping one parameter
constant at a time and observing the variation of ANE
for other parameters. This way, both the dominant
parameters and performance improvement for recon-
struction algorithms are compared. The following dis-
cussion is a summary of the performance analysis. Some
examples to support the conclusions are also provided.
[23] By examining the ANE for interpolation scenar-

ios, it is observed that the most dominant factor in
accuracy of the reconstructions is the spatial distribution
of ionosphere in the form of trend and small scale
variations. This is a very important conclusion in judging
the accuracy of the reconstructed maps using KG and

Figure 3. Average normalized error versus trend function: (a) and (d) high level of scale
disturbance; (b) and (e) low level of scale disturbance. (c) The ANE ratio of Figures 3a to 3b; (f) the
ANE ratio of Figures 3d to 3e. Circles, squares, diamonds and triangles represent RFP, OK, UK1,
and UK2, respectively.
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RFP algorithms over real data for quiet and disturbed
days such as in the works of Wielgosz et al. [2003],
Blanch [2002], Orús et al. [2005], and Stanislawska et
al. [2002]. In order to demonstrate the effect of the
ionospheric surface in reconstructions, an example is
provided in Figure 3 for uniformly distributed sampling
pattern with 11.4% sampling rate over all the trend
functions and reconstruction algorithms. In Figures 3a
and 3b, the ANE for trends m1(x), m2(x), m3(x), and m4(x)
are given. In Figures 3d and 3e, the ANE plots for the
trends m5(x) and m6(x) are given. In Figures 3a and 3d,
the parameters of small scale disturbance are chosen as
s2 = 2.56 and a = 5 corresponding to higher level of
small scale variability. In Figures 3b and 3e, the param-
eters of small scale disturbance are chosen as s2 = 0.64
and a = 15 corresponding to lower level of small scale
variability. Figure 3c shows the ratio of the ANEs in
Figure 3a to the ANEs in Figure 3b, for each reconstruc-
tion algorithm and each trend. The ratio of the ANEs in
Figure 3d to the ANEs in Figure 3e, for each reconstruc-
tion algorithm and each trend is provided in Figure 3f.
When Figures 3a and 3d are compared, it is observed that
the ANEs in Figure 3d are higher than those in Figure 3a.
Similarly, when Figures 3b and 3e are compared, it is
observed that the ANEs in Figure 3e are higher than
those in Figure 3b. When the ANEs in Figures 3a and 3b
are compared with their ratios in Figure 3c, it is observed

that the effect of higher level of small scale variability is
significant for trend functions m1(x) to m4(x) for RFP and
UK2. The ratio of ANE for trends m5(x) and m6(x) in
Figure 3f varies depending on the type of the reconstruc-
tion algorithm.
[24] From the analysis of ANE for the large number of

interpolation scenarios, we have observed that the second
most dominant parameter in the performance of recon-
struction algorithms is the sampling pattern of the
surface. For regular sampling patterns tried in this study,
regardless of the number of samples, the trend or level of
small scale disturbance, the ANE for all interpolation
algorithms are very close to each other. The ANE
increases significantly for random sampling patterns.
Although ANE for uniformly distributed sampling pat-
tern with a high number of samples is closer in value
when compared to those from regular sampling patterns,
clustered sampling pattern generally causes the highest
ANE over all trends, levels of small scale disturbance
and interpolation algorithms. Examples on the effect of
sampling pattern on the performance criterion are pro-
vided in Figures 4, 5, and 6. In Figure 4, the ANE versus
all sampling patterns are provided for all KG and RFP
algorithms. In Figure 4a, the trend is chosen as constant.
In Figure 4b, the trend has second-order variation. For
both cases, the level of small scale disturbance is average
with s2 = 0.64 and a = 10. The sampling rate for both

Figure 4. Average normalized error versus sampling pattern and average small scale disturbance
on the trend (a) constant trend m1(x); (b) second order trend m3(x).
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Figure 6. Relative error versus the trend with a high level of scale variability for (a) square,
(b) hexagonal, (c) uniformly distributed, and (d) clustered sampling patterns.

Figure 5. Average normalized error versus sampling pattern types for the second order trend,
m3(x), with (a) highest small scale disturbance and (b) lowest small scale disturbance, for a
sampling rate of 7.6%. (c) The ratio of Figures 5a to 5b.
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figures is 11.4%. The highest error in both Figures 4a
and 4b is observed for the clustered sampling pattern.
The minimum error bound is again obtained for RFP.
The second lowest error is due to the reconstruction
algorithm that assumes the correct trend. It is OK for
Figure 4a and UK2 for Figure 4b.
[25] In Figures 5a and 5b, the ANE variation against

the sampling patterns is presented for the second order
trend with the highest (s2 = 2.56, a = 5) and the lowest
(s2 = 0.64, a = 15) small scale disturbance, respectively,
for a sampling rate of 7.6%. Figure 5c shows the ratio of
the ANEs in Figure 5a to the ANEs in Figure 5b, for
each reconstruction algorithm and each trend. It is
observed from Figure 5c that the ANE for the surfaces
with lowest and highest variability are similar to each
other for the regular sampling pattern, for all reconstruc-
tion algorithms. The performance for the random sam-
plings can differ in ANE depending on the type of the
reconstruction algorithm.
[26] The variation of relative ANE with respect to

trends and sampling patterns are presented in Figure 6
with 11.4% sampling rate. Owing to the fact that the RFP
method provides a minimum error bound on the recon-
struction errors, the relative ANE of Kriging algorithms
with respect to RFP are calculated as:

�Kr ¼ 100� �nð ÞKav� �nð ÞRFPav

�nð ÞRFPav

ð18Þ

In equation (18), (en)av
K is the average normalized error. K

represents one of OK, UK1 or UK2. Figures 6a, 6b, 6c,
and 6d represent the variation of (en)av

K with respect to
trend with a high level of small scale variability for
square, hexagonal, uniformly distributed and clustered
sampling patterns, respectively. In this figure, we
observe the importance of the trend and sampling pattern
in the performance of the interpolation algorithms. As
discussed before, the relative errors increase significantly
for the surfaces with a high variability trend and for
random sampling pattern. The reconstruction algorithm
which assumes the correct trend function has the lowest
relative error. The regular sampling patterns provide
similar relative errors. The errors increase approximately
for 10 and 100 times for uniformly distributed and
clustered sampling patterns, respectively.
[27] The third most important factor in the perfor-

mance evaluation of the reconstruction algorithms is
the number of samples in sampling pattern. From our
analysis, it is observed that for any trend and small scale
variability, and sampling pattern, ANE decreases with
increasing number of samples for all interpolation meth-
ods. An example is provided in Figure 7 that shows the
variation of ANE versus number of samples for constant,
linear, and second order trends, for uniformly distributed
sampling pattern. The interpolation algorithms that

assume the correct trend function converge faster to
the minimum error bound limit as number of samples
increase. Although the convergence slows down for
higher variability trend surfaces as in Figure 7c,
11.4% sampling rate corresponding to 30 samples for
the generated grid forms a break point in the perfor-
mance improvement for all interpolation algorithms,
surface trends and small scale variability.
[28] The performance analysis of KG and RFP algo-

rithms provides a reliable basis for generating accurate
GPS-TEC maps for tomography, vertical profile genera-
tion and ionospheric earthquake precursor investigation.
The specific and general conclusions from this study are
applied to a pilot project in Turkey for the distribution
and number of GPS stations and accuracy of the instan-
taneous TEC maps for quiet and disturbed ionosphere.
Currently, the GPS stations are clustered around Mar-
mara Sea region and western Anatolia. The optimum
number and distribution of additional GPS stations can
be determined by considering the performance improve-
ment in synthetic TEC reconstructions.

3.2. Generation of TEC Maps With GPS-TEC Data

[29] The KG and RFP algorithms are applied to
generate TEC maps using GPS-TEC over a region
containing 39 stations encircled by Yerevan, Armenia
(40.23�N, 44.50�E), Robledo, Spain (40.43�N, 4.25�W),
Tromsoe, Norway (69.66�N, 18.94�E) and Nicosia,
South Cyprus (35.14�N, 33.39�E). The sampling rate
corresponds to approximately 2.5%. When the distribu-
tion of GPS stations are considered, it seems to be made
up of several clusters and there are regions where no
sampling can be obtained. The vertical TEC values are
obtained by IONOLAB-TEC from www.ionolab.org
using Reg-Est algorithm discussed by Arikan et al.
[2003, 2004, 2007] and Nayir et al. [2007]. The experi-
mental semivariogram is obtained by using

g* hð Þ ¼ 1

2N hð Þ
XN hð Þ

i; j pair
i 6¼ j

Z xið Þ � Z xj
� �� �2 ð19Þ

where h shows the distance lag between GPS stations
located at xi and xj. Z(xi) and Z(xj) are the TEC values at
points xi and xj, respectively. N(h) is the number of point
pairs with the same distance lag h. The experimental
semivariogram are fitted to the theoretical semivariogram
function g(h) defined in equation (15) and (11). An
example of generated TEC maps is presented in Figure 8
for 16 October 2004 at 0600 UT. This day is listed as the
fifth negatively disturbed day of October 2004 in the web
site of the Ionospheric Dispatch Center in Europe (IDCE)
(http://www.cbk.waw.pl/rwc/idce.html). Figures 8a, 8c,
8e, and 8g are the TEC maps generated by RFP, OK,

RS5012 SAYIN ET AL.: TEC MAPPING WITH RFP AND KRIGING

10 of 14

RS5012



UK1, and UK2 interpolation algorithms, respectively.
Figures 8b, 8d, 8f, and 8h are the error variances of the
TEC maps generated by RFP, OK, UK1, and UK2
interpolation algorithms, respectively. The computation
of error variances are provided by Sayin [2008], Blanch
[2002], Cressie [1993], and Olea [1999]. At 0600 UT,
the Sun rises from the east causing an increased
ionization in the ionosphere. This gradient of TEC in
the ionosphere from north to south and east to west can
easily be observed from Figure 8. The lowest error
variance is obtained by RFP, and the average error
variance (AEV) is 0.3398 TECU2. As the constraint on
the interpolation algorithms increases, the error variances
also increase. For OK, AEV is 0.3414 TECU2; for UK1,
AEV takes the value of 0.3452 TECU2; and finally for

UK2, AEV is equal to 0.3584 TECU2. The minimum
error variance points in Figures 8b, 8d, 8f, and 8h
correspond to the locations of GPS stations.

4. Conclusion

[30] In this study, the performance of Random Field
Priors, Ordinary Kriging and Universal Kriging assum-
ing linear and second order trends are compared over
synthetically generated TEC surfaces with respect to
their performance parameters of surface trend, small
scale surface variability, sampling pattern and number
of samples. The performance criterion is chosen as
average normalized error (ANE). The performance im-
provement or degradation between the interpolation
scenarios including the interpolation algorithms are

Figure 7. Average normalized error versus number of samples for surfaces with (a) constant
m1(x), (b) linear m2(x), and (c) second order m3(x) trends.
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observed by analyzing the ANE for a large number of
scenarios. It is observed that, the most important inter-
polation performance parameter is the trend of the

surface and the degree of small scale disturbance on it.
For all scenarios, RFP assumes that trend of the inter-
polated TEC surface is known, and thus RFP provides a

Figure 8. The GPS-TEC maps by (a) RFP, (c) OK, (e) UK1, (g) UK2 and corresponding error
variances (EV) (b) EV-RFP, (d) EV-OK, (f) EV-UK1, (h) EV-UK2 for 16 October 2004 at 0600 UT.
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minimum error bound. The interpolation algorithm that
assumes the correct trend, performs similar to RFP. For a
surface with a high variability of small scale disturbance
or the assumption of wrong trend for interpolation
algorithms, the errors can grow by 10 and 100 fold,
respectively. The second most important parameter that
effect the performance of interpolation algorithms is the
sampling pattern. The error increases by three to five fold
for the random sampling when compared to regular
sampling patterns. The worst performance is obtained
when the sampling points are clustered in an area. The
third important parameter is the number of samples and
for an approximately 10% sampling rate corresponds to a
performance improvement of two to four fold even for
highly varying surface trends. Although the performance
of all KG and RFP algorithms can be compared over
specific scenarios, it is observed that in generation of
instantaneous TEC maps with GPS-TEC data, the aver-
age error variance increases for the interpolation algo-
rithms that have to satisfy more constraints. In the
application of the KG and RFP algorithms to GPS-
TEC data, the lowest error variance is observed for
RFP. Ordinary Kriging assuming lowest constraint for
reconstruction performed similar to RFP. Therefore, we
conclude that irrespective of the trend, small scale
disturbance, sampling pattern and number of samples,
OK is an optimum choice for instantaneous TEC maps
where a priori information over the region is not avail-
able or the exact trend in the ionosphere is not known. In
future studies, the spatio-temporal interpolation and
prediction methods for the ionospheric parameters will
be investigated.

[31] Acknowledgment. This study is supported by TUBI-
TAK EEEAG grant 105E171.
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