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Abstract—This study investigates the effects of incorporating
Doppler velocity measurements directly into track association and
maintenance parts for single and multiple target tracking unit in a
multi function phased array radar (MFPAR). Since Doppler velocity
is the major discriminant of clutter from a desired target, the
measurement set has been expanded from range, azimuth and elevation
angles to include Doppler velocity measurements. We have developed
data association and maintenance part of a well known tracking
method, Interacting Multiple Model Probabilistic Data Association
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Filter (IMMPDAF), with the Doppler velocity measurements and
demonstrated the performance improvement through simulations in
terms of track update interval, track maintenance rate, RMS position
estimation error, probability of detection and processing time. Since
Doppler velocity measurements are employed in track maintenance,
non-linear filters are used in the scheme leading to the use of Extended
Kalman Filter (EKF) based PDAF. Comprehensive simulations have
revealed that using Doppler velocity measurements along with 3D
position measurements in heavy clutter conditions lead to an increase
in track maintenance rate, track update interval; a decrease in position
estimation error, processing time and no considerable effect on the
probability of detection. This result is very significant for the efficient
use of the limited resources of a multi function phased array radar.

1. INTRODUCTION

The problem of target tracking has been an important issue of signal
and data processing for many years and a variety of tracking methods
have been recommended in the literature [1–7]. A Multi Function
Phased Array Radar (MFPAR) is capable of transmitting and receiving
electromagnetic waves electronically with its phase shifters to the
directions calculated by the tracker [8] and therefore, it removes the
requirement of a mechanically rotating antenna. Performance of the
target tracking unit of an MFPAR in complex environments heavily
relies on the success of Track Initiation (TI) and Track Association
and Maintenance (TAM) algorithms. In an MFPAR system, extracted
measurements from the detections are transferred to the target tracking
unit with a transfer rate allowed by the MFPAR. The measurements
are first fed into the measurement-to-track association (shortly, track
association) unit that correlates the measurements with the tracks
being already initiated. The measurements which are not correlated
with the registered tracks are assumed to have originated from new
potential targets and they are directed to the TI unit. The performance
of TI has a vital importance for tracking systems. When a TI unit fails
to initiate real tracks, the radar may miss potential targets. In the
cases where TI unit initiates false tracks, already limited resources of
MFPAR are wasted on non-existing targets resulting in the reduction
of the number of targets to be tracked. Thus, it is very critical of
TI to correctly initiate the real tracks in a required period of time.
Furthermore, TI should also suppress the measurements originated
from false detections. A statistically successful TI should be able to set
its true track initiation probability to an acceptable level while keeping
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the false track initiation probability as low as possible [9].
Following the TI process, TAM unit essentially determines the

performance of the tracking system. An MFPAR is capable of using
an adaptive sampling policy by the agile beam positioning. Especially
for multiple target environments with heavy clutter, increasing the
duration between two samples of a track, i.e., track update interval,
reduces the computational complexity leading to conservation of radar
energy for more demanding tasks such as simultaneous tracking of
increased number of targets. However, longer track update intervals
may also result in an increase in the position estimation errors
which will reduce the probability of detection. The most common
performance measures of a TAM unit are RMS position estimation
error, track maintenance rate, probability of detection, track update
interval and processing time. The major design criteria for a
TAM unit in an MFPAR are to increase the track update interval,
track maintenance rate and probability of detection while decreasing
estimation error and processing time to allocate the radar resources
efficiently. Owing to the beam steering capability of MFPAR systems,
track update interval can be modified adaptively. Such a control is
essential for efficient allocation of the MFPAR resources. For instance,
using high update rates to track a non-maneuvering target is not
usually necessary. The expected tracking performance can still be
achieved with longer track update intervals for a target that reduces
the burden on system resources. Contrarily, utilizing high track update
rate for a maneuvering target is very important with regard to the
required tracking performance. Therefore, a TAM algorithm that
is capable of scheduling electromagnetic beams and steering them
correctly to the predicted positions of the tracked target is of critical
importance.

In order to track targets with complex motion capabilities,
Interacting Multiple Model (IMM) algorithm has been proved to be
very effective [1, 2]. However, in the presence of clutter, a track
association utility is necessary to assign corresponding weights to
the extracted measurements. Probabilistic Data Association Filter
(PDAF) is one of the commonly used method for this purpose [1, 2].
A combination of these two methods, Interacting Multiple Model
Probabilistic Data Association Filter (IMMPDAF) structure, will
be used in this study as a TAM technique where 3D position
measurements are typically used. However, the major discriminant
of clutter from the target of interest is Doppler velocity (or range rate)
measurement. The incorporation of Doppler velocity measurement in
a phased array radar for track initiation and maintenance is described
in [9–11]. The use of Doppler velocity measurement to increase ECCM
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capability of a generic radar is presented in [12]. A new statistic of
accelerations based on the range rate measurement is provided in [13].
The statistic turns out to be a reliable indicator of a maneuver and it is
also a good estimator of the acceleration. The new method compares
favorably to a two mode IMM and a tracker that switches process
noise levels based on the position measurement innovations. In [14],
Doppler velocity measurements are utilized in the Multiple Hypothesis
Tracker (MHT). The results indicate a reduction in false track
rate, confirmation time and computational requirements when the
track initiation rate is increased due to more efficient return-to-track
association process in TI. In [15], velocity based track discrimination
is posed as a detection problem. Some parametric data are presented
showing the effects of combining velocity measurements with the usual
position measurements in a simple form of target tracking Kalman
filter [16]. Also, the effects on steady-state performance and filter
gains are shown, as well as the time required for convergence to steady
state. An adaptive, non-linear algorithm using both position and radial
velocity measurements in a Track-While-Scan (TWS) based radar for
targets in a clutter environment is presented in [17]. In [18], a one-
point track initiation method is derived for conventional target tracking
systems where noisy sensor measurements of both target position and
Doppler velocity are available. It is shown that the proposed method
will exhibit a much shorter true track confirmation delay than a similar
system based on the standard approach. In [19, 20], one-point track
initiation and an efficient Doppler data association method are used
as a variety of PDAF technique in an active sonar underwater multi-
target tracking scenario. A modified joint probabilistic data association
(JPDA) algorithm that uses range rate measurements in addition to
position measurements using a nonlinear measurement model is given
in [21]. In [22], a tracking algorithm using both position and range
rate for a target from a phased array radar is presented. The results
show that the EKF with the Doppler velocity measurements provides
a good performance especially for the target maneuvers. In [23], an
IMM estimator consisting of a number of EKF modules is used to cope
with target range rate measurements for an airborne early warning
system tracking scenario. In all of the existing methods outlined
above, an important achievement is the improved data initiation and
association performance by using the incorporation of Doppler velocity
measurements. In this study, we demonstrate the further improvement
achieved on the comprehensively defined performance measures of the
developed IMMPDAF algorithm by the direct inclusion of Doppler
velocity measurements along with 3D position measurements. Since
Doppler velocity measurements are employed in track maintenance,
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non-linear filters are used in the scheme leading to the use of Extended
Kalman Filter (EKF) based PDAF. In order to control the track update
interval, a commonly preferred technique is used where the selection
of update interval is based on the predicted values of the radar angle
innovation standard deviations relative to the radar beamwidth [24].

The outline of the paper is as follows; Section 2 gives a brief
description of the widely used TAM scheme, IMMPDAF, and some
analytical derivations of developed IMMPDAF with 3D position plus
Doppler velocity measurements. In Section 3, the results of computer
simulations are provided.

2. TRACK ASSOCIATION AND MAINTENANCE
SCHEME

In modern target tracking systems, Kalman filter is a widely used
state estimator which gives the optimal minimum mean square error
providing that the system is linear; initial state vector and system
disturbances are white Gaussian distributed [1, 25, 26]. It is also
the best estimator in case of non-Gaussian initial state vector and
disturbances for linear systems. From the viewpoint of target tracking,
process noise matrix in Kalman filter defines a model concerning for
the target motion. However, complex targets may obey more than one
motion model and some serious problems would arise if only one motion
model was used. Therefore, one needs more than one model to better
identify the motion characteristics of a target. One way of doing so is
to run N-parallel Kalman filters with different process noise matrices.
The approach of using multiple Kalman filters run in parallel and at
a given time, choosing the output from the best filter to represent the
current target state is called multiple model filtering. One of the very
efficient implementation of the multiple model approach is the IMM
in which the state estimates and the covariance matrices from the
multiple models are combined together according to a Markov model
for the transition between maneuver states [1, 25, 26]. The discrete
time state equation for IMM is given by [1]:

x(tk) = F(m (tk) , δk−1)x(tk−1) + G(m (tk) , δk−1)v(tk) (1)

The corresponding measurement equation derived from (1) is:

z(tk) = H(tk)x(tk) + w(tk) (2)

In (1) and (2), tk is the kth sampling time, m (tk) is the effective
model mj from t(k−1) to tk, mj is the jth model among totally r
possible motion models (m (tk) ∈ mj , j = 1, . . . , r), x(tk), z(tk), v(tk)
and w(tk) are the state, measurement, process noise and measurement
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noise vectors, respectively. F(m (tk) , δk−1) and G(m (tk) , δk−1) are
the state transition and process noise matrices, both at time tk,
respectively. The values of the matrices are dependent on both kth
sampling time and the time difference between kth and (k − 1)th
sampling times, namely the track update interval, δk−1 = tk − tk−1,
obtained at (k − 1)th sampling time. The covariance matrices of
measurement and process noise at time tk are independent of each
other and defined as M(tk) and Q (m (tk) , δk−1), respectively. H(tk)
is the measurement matrix at time tk.

During the search function of an MFPAR system, the
measurements extracted from the search region are transferred to
the TI unit with an allowable transfer rate of the MFPAR. This
period can be constant or varying depending on the requirements.
However, in TAM, track update interval can be determined based on
an adaptive algorithm according to the maneuver capabilities of the
targets under track. The transition between different models of IMM
is accommodated with model transition probabilities. These transition
probabilities can be updated at each sampling time depending on the
current track update interval of the target under track. The chain
obtained by updating the model transition probabilities depending
on the current update interval is essentially in a class of a semi-
Markov chain and it represents the target motion better [27, 28]. In
this case, the model transition probabilities, (pij(δk−1) ∈ Π(δk−1),
(i, j = 1, . . . , r) are defined as [1]:

pij(δk−1)
∆= P {m (tk) = mj |m (tk−1) = mi } (3)

In (3), P {·} is the probability of the event given in the curly
brackets and pij(δk−1) is the probability of the model j at time tk given
the system was in model i at time tk−1. For a simpler notation, tk−1 will
be denoted by the index k− 1. The model transition matrix, Π(δk−1),
is composed of these probabilities and is given in [1]. Some definitions
in IMMPDAF are summarized in Table 1. In the definitions, SVE,
SVP, EVSV and CME stand for State Vector Estimate, State Vector
Prediction, Expected Value of State Vector and Covariance Matrix
Estimate, respectively.

A general flow diagram of the IMMPDAF structure is given
in Fig. 1. In IMMPDAF, interaction/mixing process produces
mixed state vector, x̂0j (k − 1 |k − 1), and its covariance matrix,
P̂0j (k − 1 |k − 1), using state vector estimates, x̂i (k − 1 |k − 1),
covariance matrices, P̂i (k − 1 |k − 1), and mixing probabilities,
µi|j (k − 1 |k − 1), for each model. The mixed values are then
transferred to the PDAF structure corresponding to each model
to calculate state vector estimate, x̂i (k |k ), its covariance matrix,



Progress In Electromagnetics Research, Vol. 108, 2010 255

Table 1. Summary of some definitions used in IMMPDAF.
(i, j = 1, . . . , r) Model indices
(k, l) Time indices

Zk =
[

R1 R2 . . . Rk

]
Measurement matrix up to kth sampling time

Rk =
[

rk;1 rk;2 . . . rk;Nk

]
Measurement submatrix at kth sampling time

rk;s =
[

xk;s yk;s zk;s υk;s
]T sth measurement vector at kth sampling time

x̂(l |k )
∆
= E

[
x(l)

∣∣∣Zk
]

EVSV at lth sampling time given Zk

x̂(l |k ), l = k SVE given Zk

x̂(l |k ), l > k SVP given Zk

x̂j
d(k |k ) SVE with jth model and dth validated meas. given Zk

x̂i(k − 1 |k − 1 ) SVE with ith model given Zk−1

P̂i(k − 1 |k − 1) CME of state vector with ith model given Zk−1

x̂0j(k − 1 |k − 1) Mixed initial SVE given Zk−1

P̂0j(k − 1 |k − 1) CME of initial mixed state vector given Zk−1

Figure 1. Flow diagram of IMMPDAF structure.
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P̂i (k |k ), and likelihood function, Λi(k). Using these values, model
mixing probabilities, µi|j (k |k ), and model probabilities, µi(k), are
determined. Then, a final state vector estimate, x̂ (k |k ), its
covariance matrix, P̂ (k |k ), state update interval, tk+1, and state
vector prediction, x̂ (k + 1 |k ), are computed for the target under track
utilizing the previous outputs. Then, an assigned beam of the MFPAR
is steered to the predicted position to make an effort to extract possible
measurements for the target under track. Details of the IMMPDAF
approach can be found in [1, 25, 26]. Following subsection details the
target motion models employed in the IMM structure.

2.1. Target Motion Models

In this subsection, target motion models utilized in IMM structure
are discussed. In this study, an IMM structure with three models is
employed for the accurate representation of the motion characteristics
of the target.

2.1.1. Benign Motion Model, m1

The Benign motion model is also known as white noise acceleration
model [1, 25, 26]. It is used to represent the constant velocity regimes of
a target. In real life, due to some atmospheric and physical conditions,
very small acceleration values may appear. Such acceleration can be
characterized by a zero mean Gaussian distributed white noise which
is defined as the process noise of the system and it is given by its
covariance matrix, called process noise matrix [1, 25, 26]. The values of
standard deviation of process noise for such motion, σv1 , is generally
chosen between 1 to 5 m/s2 [1, 25, 26].

2.1.2. Maneuver Motion Model, m2

In case of a maneuvering of a target, the standard deviation of process
noise can be increased to a fraction of the maximum acceleration
level of the target of interest, amax, such as σv2 = αamax where
(0.5 < α ≤ 1) [1, 25, 26].

2.1.3. Maneuver Start/Stop Model, m3

Maneuver Start/Stop Model is also known as Wiener process
acceleration model [1, 25, 26]. When a target moves in constant
acceleration, possible fluctuations around this constant acceleration
is modeled as a Wiener-type process noise which results in a time-
varying acceleration. In this model, the change of acceleration value is
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taken as a zero mean Gaussian distributed random variable with the
standard deviation of σv3(k) = min (0.5ȧmaxδk−1, amax) where ȧmax is
the assumed maximum jerk value of the target of interest [1, 25, 26].

2.2. Doppler Velocity Incorporation

In this subsection, Doppler velocity inclusion into the TAM method
is outlined. For this reason, first we define the measurement matrix
given in (2), where the values of state and measurement vectors are
to be predicted. The state prediction vector is a 9-dimensional vector
including position, velocity and acceleration values in 3D and defined
for jth model and kth sampling time as:

x̂j(k |k − 1) =
[

x̂j(k |k − 1) ˆ̇x
j
(k |k − 1) ˆ̈x

j
(k |k − 1) . . .

ŷj(k |k − 1) ˆ̇y
j
(k |k − 1) ˆ̈y

j
(k |k − 1) . . .

ẑj(k |k − 1) ˆ̇z
j
(k |k − 1) ˆ̈z

j
(k |k − 1)

]T

9×1

(4)

where x̂j(k |k − 1), ŷj(k |k − 1) and ẑj(k |k − 1) are the position pre-
dictions; ˆ̇x

j
(k |k − 1), ˆ̇y

j
(k |k − 1), ˆ̇z

j
(k |k − 1) are the velocity predic-

tions and ˆ̈x
j
(k |k − 1), ˆ̈y

j
(k |k − 1), ˆ̈z

j
(k |k − 1) are the acceleration

predictions, all in Cartesian coordinates. The measurement prediction
vector in case of the existence of Doppler velocity measurement for jth
model of the system, ẑj (k |k − 1), is calculated as:

ẑj(k |k−1) =




rj (k |k − 1)
θj (k |k − 1)
φj (k |k − 1)
ṙj (k |k − 1)




=




√
x̂j(k |k − 1)2 + ŷj(k |k − 1)2 + ẑj(k |k − 1)2

tan−1
(
ŷj(k |k − 1)/x̂j(k |k − 1)

)

tan−1

(
ẑj(k |k−1)/

(√
x̂j(k |k−1)2+ŷj(k |k−1)2

))


x̂j(k |k−1)ˆ̇x

j
(k |k−1)+ŷj(k |k−1)ˆ̇y

j
(k |k−1)

+ẑj(k |k − 1)ˆ̇z
j
(k |k − 1)




√
x̂j(k |k − 1)2 + ŷj(k |k − 1)2 + ẑj(k |k − 1)2




(5)

where rj (k |k − 1) is the prediction of range measurement, θj (k |k − 1)
is the prediction of azimuth angle measurement, φj (k |k − 1) is the
prediction of elevation angle measurement and ṙj (k |k − 1) is the
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prediction of Doppler measurement for jth model at kth sampling
time. The measurement vector is a non-linear function of the state
vector as shown in (5) leading to the use of an extended Kalman Filter
(EKF) based PDAF scheme. Therefore, as stated previously, instead
of the measurement matrix, a first degree Taylor series expansion of
the measurement equation is employed to obtain the Jacobian of H(k).
The Jacobian of the measurement matrix, HJ(k), is defined as:

HJ(k) ∆=
(
∇x(k)(H(k)x(k))T

)T
∣∣∣∣
x(k)=x̂j(k|k−1 )

(6)

where

∇x(k) =
[

∂
∂x(k)

∂
∂ẋ(k)

∂
∂ẍ(k) . . .

∂
∂y(k)

∂
∂ẏ(k)

∂
∂ÿ(k) . . .

∂
∂z(k)

∂
∂ż(k)

∂
∂z̈(k)

]T

9×1

(7)

is the gradient operator defined for the 9-dimensional state vector [25].
The gradient value of the vector (H(k)x(k))T is calculated using (7)
as [25]:
(
∇x(k)(H(k)x(k))T

)
=

[
∂

∂x(k)
∂

∂ẋ(k)
∂

∂ẍ(k) . . .

∂
∂y(k)

∂
∂ẏ(k)

∂
∂ÿ(k) . . .

∂
∂z(k)

∂
∂ż(k)

∂
∂z̈(k)

]T

9×1

[
(H(k)x(k))T

]
1×h

(8)

Since the Jacobian matrix is transpose of (8), the Jacobian of the
measurement matrix is derived as:

HJ(k) = [ H1(k) H2(k) 0h×3 ]h×9 (9)

where h = 3 for position only measurements and h = 4 for position
and Doppler velocity measurements. In order to calculate HJ(k), the
submatrices are decomposed as:

H1(k) = [ h1(k) h2(k) h3(k) ]h×3 (10)



Progress In Electromagnetics Research, Vol. 108, 2010 259

where

h1(k) =




x̂j(k |k − 1)
rj(k |k − 1)

−ŷj(k |k − 1)
x̂j(k |k − 1)2 + ŷj(k |k − 1)2

−x̂j(k |k − 1)ẑj(k |k − 1)

rj(k |k − 1)2
√

x̂j(k |k − 1)2 + ŷj(k |k − 1)2




ˆ̇x
j
(k |k − 1)

(
ẑj(k |k − 1)2 + ŷj(k |k − 1)2

)

−x̂j(k |k − 1)

(
ŷj(k |k − 1)ˆ̇y

j
(k |k − 1)

+ẑj(k |k − 1)ˆ̇z
j
(k |k − 1)

)



rj(k |k − 1)3




(11)

h2(k) =




ŷj(k |k − 1)
rj(k |k − 1)

x̂j(k |k − 1)
x̂j(k |k − 1)2 + ŷj(k |k − 1)2

− ŷj(k |k − 1)ẑj(k |k − 1)

rj(k |k − 1)2
√

x̂j(k |k − 1)2 + ŷj(k |k − 1)2




ˆ̇y
j
(k |k − 1)

(
ẑj(k |k − 1)2 + x̂j(k |k − 1)2

)

−ŷj(k |k − 1)

(
x̂j(k |k − 1)ˆ̇x

j
(k |k − 1)

+ẑj(k |k − 1)ˆ̇z
j
(k |k − 1)

)



rj(k |k − 1)3




(12)
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h3(k)=




ẑj(k |k − 1)
rj(k |k − 1)

0
√

x̂j(k |k − 1)2 + ŷj(k |k − 1)2

rj(k |k − 1)2




ˆ̇z
j
(k |k − 1)

(
x̂j(k |k − 1)2 + ŷj(k |k − 1)2

)

−ẑj(k |k − 1)

(
ŷj(k |k − 1)ˆ̇y

j
(k |k − 1)

+x̂j(k |k − 1)ˆ̇x
j
(k |k − 1)

)



rj(k |k − 1)3




(13)

and

H2(k) =




0 0 0
0 0 0
0 0 0

x̂j(k|k−1 )
rj(k|k−1 )

ŷj(k|k−1 )
rj(k|k−1 )

ẑj(k|k−1 )
rj(k|k−1 )


 (14)

In case of position only measurements, the last row of H1(k)
and H2(k) has to be removed. In this way, the measurement
matrix is defined as a function of the state vector prediction given
above for jth model at kth sampling time. After interaction/mixing,
association/filtering and model probabilities update, the next step
in IMMPDAF structure is to estimate track update interval for the
corresponding track for the computation of the state prediction vector.
Finally, position predictions are utilized to steer an idle beam of
MFPAR to attempt to extract possible measurements for the target
under track.

2.3. Estimation of Track Update Interval

In the open literature, a number of efficient track update interval
estimators are available [24, 29]. In [29], no clutter is assumed for
the estimation of track update interval. The second method in [24]
that is widely used for clutter conditions is utilized in this study. In
this method, track update interval, δk, is selected from one of the
entries of a constant update interval vector, t. The contents of this
vector are application dependent. However, in this study, the values of
this vector are chosen in parallel with the benchmark given in [30] as
t = [ 3 2.5 2 1 0.1 ]T. In case no measurement is extracted or no
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measurement falls inside the validation region, track update interval is
chosen as δk = δmin

k = 0.1 s. The algorithm is given as:
(i) Begin test with the maximum value of vector t;
(ii) Calculate the state vector prediction and substitute it in (6) to

obtain HJ(k);
(iii) Using HJ(k) and covariance matrix of the state vector, calculate

the covariance matrix of the residual vector using (15) as:

Ŝ (k + 1) = HJ (k + 1) P̂ (k + 1 |k )HJ(k + 1)T+M (k + 1) (15)
(iv) Choose the diagonal elements related to the corresponding

angles in residual matrix, Ŝ (k + 1), namely Ŝ (k + 1) (2, 2) and
Ŝ (k + 1) (3, 3) as test variables;

(v) Compare both test variables to a fraction, η, of the half power
beamwidth values of the MFPAR, ηϕ3 dB;

(vi) If test variable is less than or equal to the calculated threshold,
track update interval under test is chosen as the final interval
value, else the following track update interval under test is chosen
and go to (ii);

(ii) If the test variables do not satisfy the conditions, choose the track
update interval as δk = δmin

k = 0.1 s.

2.4. System Performance Measures

In order to obtain the performance of the TAM algorithm for an
MFPAR, a comprehensive set of system performance measures are
defined in detail. These performance measures are given in the
following subsections.

2.4.1. Track Update Interval (~)

Track update interval is the time taken to receive a new measurement
from the target being tracked. Longer track update intervals with
acceptable level of estimation error is preferred for a given target. In
case where the number of Monte-Carlo run is chosen as NMC and the
maximum number of update is limited to Nk for each run, a track
update interval matrix, ~~~, with the size of Nk ×NMC is formed using
Nk track updates of cth run of a simulation. The average track update
interval is calculated as:

~ =
1

Nk

(
NMC∑
c=1

ytmr(c)

)
NMC∑

c=1

(
ytmr(c)

Nk∑

k=1

~~~(k, c)

)
(16)
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where ytmr is provided in the following subsection.

2.4.2. Track Maintenance Rate (ytmr)

Track maintenance rate is defined as the ratio of tracks that are
not dropped. A successful track maintenance unit is expected to
detect different maneuver magnitudes of targets. Therefore, track
maintenance rate for a tracker is a very important performance
parameter which is related to the number of track drop occurrence
within a number of simulations. The track maintenance rate for a
single simulation and its average along several simulations are given
as:

ytmr(c) =
{

1 hpos(k, c) ≤ 1.5rg, for ∀k
0 otherwise

ytmr = 1
NMC

NMC∑
c=1

ytmr(c)
(17)

where rg is the value of range gate for tracking function of MFPAR
and hpos is defined in the next subsection.

2.4.3. RMS Position Estimation Error (hpos)

Position estimation error is the main indicator of how well the tracker
models the target motion at a given sampling time and it will directly
affect the previously defined performance measures, namely the track
update interval as well as the track maintenance rate. RMS position
estimation error is calculated as a function of difference between the
state vector estimation at the kth sampling time (k = 1, . . . , Nk) of cth
run (c = 1, . . . , NMC) of a simulation, bx̂c (k), and the true state vector
at the kth sampling time, xt (k), as:

hpos(k, c) =

√ (
bx̂c (k) (1)− xt (k) (1)

)2 +
(
bx̂c (k) (4)− xt (k) (4)

)2

+
(
bx̂c (k) (7)− xt (k) (7)

)2

(18)
where bx̂c (k) (q) is the qth element of the bx̂c (k) vector. In order to
calculate the average of all position error along the simulations, hpos,
the definition of track maintenance rate is required since RMS position
estimation error is only calculated for a successfully maintained track
along the simulations. By using track maintenance rate, the average
RMS position estimation error is calculated as:

hpos =
1

Nk

(
NMC∑
c=1

ytmr(c)

)
NMC∑

c=1

(
ytmr(c)

Nk∑

k=1

hpos(k, c)

)
(19)
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2.4.4. Data Processing Time (tdp)

The average data processing time is given in milliseconds and defines
the time taken to process a single scan of measurements for updating
the existing tracks. It is calculated for both position only and position
plus Doppler velocity cases for comparison purposes.

2.4.5. Probability of Detection (Pdt)

Probability of detection needs to be properly defined for an MFPAR.
In the signal processing unit of an MFPAR, probability of detection is
the probability of a sample of a desired signal (not noise originated)
exceeding a calculated or a preset threshold. However, for tracking
unit of an MFPAR, probability of detection is a definition concerning
detecting a target based signal which is received after the process of
beam steering by using the state prediction vector of the corresponding
track. Therefore, this definition is about the performance of both
signal processing and the tracking unit. Especially, in case of an
unsuccessful tracker with higher prediction error, the beam will be
steered to positions that may not contain the target, resulting in miss-
detection. The probability of detection of a target under track at kth
sampling time and cth run of a simulation, Pdt(k, c), is defined as:

Pdt(k, c) =
{

1 |r(k)− pr̂(k, c)| ≤ rg

0 otherwise (20)

where r (k) is the exact range of the target at kth sampling time,
pr̂(k, c) is the predicted range value at kth sampling time and cth run
of a simulation calculated as:

pr̂(k, c) =
√

(bx̂2
c (k |k − 1) (1) + bx̂2

c (k |k − 1) (4) + bx̂2
c (k |k − 1) (7))

(21)
where bx̂c (k |k − 1) (q) is the qth element of the state prediction vector
at kth sampling time and cth run of a simulation and is defined as:
bx̂c (k |k − 1) =

[
bx̂c(k |k − 1) b ˆ̇xc(k |k − 1) b ˆ̈xc(k |k − 1) . . .

bŷc(k |k − 1) b ˆ̇yc(k |k − 1) b ˆ̈yc(k |k − 1) . . .

bẑc(k |k − 1) b ˆ̇zc(k |k − 1) b ˆ̈zc(k |k − 1)
]T

9×1

(22)

The average probability of detection for all the runs, Pdt is calculated
as:

Pdt =
1

Nk

(
NMC∑
c=1

ytmr(c)

)
NMC∑

c=1

(
ytmr(c)

Nk∑

k=1

Pdt(k, c)

)
(23)
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The following subsection details the comprehensive simulation results
and discussions.

2.5. Simulations

In this section, the simulation details are provided. As a first step,
a typical radar scenario employed in the simulations is defined. The
scenario can be divided into four parts. In the first part, a radar model
with its basic blocks are given. In the second part, benchmark targets
given in [30] are summarized. In the third part, physical environment
properties are briefly discussed. The tracking parameters are provided
in the last part.

The chosen radar is an X-band, monostatic MFPAR with the
operating frequency of 9 GHz. The half power beamwidth values
for both azimuth and elevation, ϕ3 dB, are chosen as 0.5◦ with the
coverage area of 110◦ in azimuth and 78◦ in elevation. The range gate
value for tracking function of the MFPAR, rg, is chosen as 1500 m.
Electromagnetic waves transmitted by the antenna system of MFPAR
are returned from the possible targets and environment and acquired
by the radar antenna. The received Radio Frequency (RF) signal is
downconverted resulting in the Intermediate Frequency (IF) signal that
is transferred to the following digital part of the receiver. Through the
digital part, the digitized signal by an appropriate Analog-to-Digital
Converter (ADC) is sent to the Digital Signal Processing (DSP) unit
of the MFPAR. After signal detection, thresholding and centroiding
parts in the DSP unit, the extracted measurement points are declared
and sent to the Digital Data Processing (DDP) unit in which tracking
function is employed.

For the target, six aircraft benchmark models are assumed [30].
First target is a large military cargo aircraft that can maneuver up to
3 g. Second target is a commercial aircraft which is smaller and more
maneuverable than Target 1 maneuvering up to 4 g. Third target is
a high speed medium bomber maneuvering up to 4 g. Fourth target
is another bomber with maneuverability up to 6 g. Fifth and sixth
targets are the fighter aircrafts maneuvering up to 7 g.

In the environment subscenario, indeterministic, volumetric
clutter sources such as chaff and rain are assumed and the parameters
of such clutter sources are defined statistically. In the DSP unit of the
MFPAR, some techniques to filter clutter signals are utilized. However,
residual clutter signal after filtering may still cause measurement
points at the output of the DSP unit. In the environment scenario,
number, position and Doppler values for these residual clutter based
measurement points are modeled statistically.
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From the viewpoint of tracker subscenario, IMMPDAF parameters
of the DDP unit of the MFPAR are provided at the final part.

According to the given radar scenario, Monte-Carlo runs are
performed to present the performance of tracking functions of the
MFPAR with respect to the defined performance criteria. The number
of Monte-Carlo runs are kept at 1000, since it is observed that a further
increase in simulations does not change the results considerably.

2.5.1. Clutter Generation

In this section, the generation of clutter detections at the output of the
DSP unit is provided. In this study, two different cases are defined. The
first one is the assumption of clutter-free environment; the other case
is with the clutter. The average false alarm rate, Pfa, that is defined
per range-Doppler resolution cell can take values as 1×10−5, 3×10−5,
5×10−5, 7×10−5 and 9×10−5. For the following sampling time which
is calculated by the track update interval estimator, the total number
of = (ζPfa) clutter detections around the predicted position vector are
generated where = (nc) is a Poisson distributed random variable with
mean nc and ζ is the total number of range-Doppler resolution cells for
a steered beam. The bth clutter sample (b = 1, . . . ,= (nc)) at (k+1)th
sampling time of cth run, Cc (k + 1) (:, b), is generated as:

Cc (k + 1) (:, b)

=




N
(√(

bx̂c (k + 1| k) (1)2 + bx̂c (k + 1| k) (4)2+
bx̂c (k + 1| k) (7)2

)
;σ2

r

)

N (
tan−1

(
bx̂c (k + 1| k) (4)/bx̂c (k + 1| k) (1)

)
; σ2

θ

)

N


 tan−1

(
bx̂c (k + 1| k) (7)/√

bx̂c (k + 1| k) (1)2 + bx̂c (k + 1| k) (4)2

)

; σ2
φ




N (
0;σ2

ṙCM

)




(24)

where N (
x̄; σ2

)
is a Gaussian random variable with the mean of x̄

and the variance of σ2. σṙCM is the standard deviation of the Doppler
velocity measurements of clutter and chosen realistically as σṙCM =
15m/s. Besides, σr = 20m, σθ = 0.54mrad and σφ = 0.54mrad are
the standard deviation values of the measurements in range, azimuth
and elevation dimension, respectively. bx̂c (k + 1| k) is the prediction
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vector for (k+1)th sampling time formed at kth sampling time for cth
run and bx̂c (k + 1| k) (q) is the qth element of this vector.

2.5.2. Target Signal Generation

Target originated detections are generated depending on the state
prediction vector, the probability of detection value of the DSP unit
and the exact position of the target. To obtain a detection, the
target must be inside the steered beam. For a target to be in an
assigned beam, the absolute value of the prediction error in range, i.e.,
difference between the exact and the predicted range value should be
at most half of the range gate value, rg, where rg = 1500 m. If the
target is within the beam, for the decision that the target is detected,
probability of detection, Pd, value of the DSP unit is compared with
a uniformly distributed random variable, ρ. If ρ is smaller than or
equal to Pd, target detection decision is given and the measurement
points are generated. If these conditions are not satisfied, no target-
based measurement is produced. The target based sample tc (k + 1)
at (k + 1)th sampling time of cth run is generated as:

tc (k + 1)

=




N
(√(

bx̂c (k + 1| k) (1)2 + bx̂c (k + 1| k) (4)2

+bx̂c (k + 1| k) (7)2

)
; σ2

r

)

N (
tan−1

(
bx̂c (k + 1| k) (4)/bx̂c (k + 1| k) (1)

)
; σ2

θ

)

N




tan−1




bx̂c (k + 1| k) (7)/(√
bx̂c (k + 1| k) (1)2+bx̂c (k + 1| k) (4)2

)



; σ2
φ




N







bx̂c (k + 1| k) (1)bx̂c (k + 1| k) (2)
+bx̂c (k + 1| k) (4)bx̂c (k + 1| k) (5)
+bx̂c (k + 1| k) (7)bx̂c (k + 1| k) (8)




√√√√
(

bx̂c (k + 1| k) (1)2 + bx̂c (k + 1| k) (4)2

+bx̂c (k + 1| k) (7)2

) ;σ2
ṙ




if
(∣∣r(k)−N (

pr̂(k, c);σ2
r (k)

)∣∣ ≤ 0.5rg

) ∩ (ρ ≤ Pd)

[·] otherwise




(25)

where r(k) − N (
pr̂(k, c);σ2

r (k)
)

is the difference vector between the
exact position of the target and measurement prediction vector at
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kth sampling time. σṙ is the standard deviation of the Doppler
velocity measurements of the target based measurements and chosen
as σṙ = 5 m/s. [·] denotes an empty vector for the case of no target
based measurement is generated.

2.5.3. IMMPDAF Parameters

In the previous subsections, the parameters defining the radar, target
and clutter scenarios are provided in connection with the generation
of measurements from the simulations. Once the measurement set is
defined, the extracted values are fed to the tracking section of DDP
unit of the MFPAR. The selected tracker for the given scenario is
IMMPDAF whose properties are defined in Section 2. The following
summarizes the choice and values of basic parameters of IMMPDAF
as it is used in the tracker performance simulations:

• Covariance Matrix of Process Noise: 3-model IMM structure and
its diagonal covariance matrices are chosen as: Q (m1) = σ2

v1
I3×3,

Q (m2) = σ2
v2

I3×3, Q(m3, δk−1) = (min (0.5ȧmaxδk−1, amax))
2I3×3,

where IN×N is N -dimensional identity matrix. Here, taking into
account the amount of maneuvers of the benchmark targets [30],
σv1 = 2 m/s2, σv2 = 30 m/s2, amax = 70m/s2 and ȧmax = 60m/s3.

• Covariance Matrix of Measurement Noise: This constant matrix
is generated according to the measurement accuracies. The
accuracies for range, σr = 20m, σṙ = 5m/s, σθ = 0.5mrad and
σφ = 0.5 mrad are chosen.

• Initial Model Probabilities: For the initial value of model
probabilities,

[
µ1(0) µ2(0) µ3(0)

]T = [ 0.5 0.25 0.25 ]T is
chosen. In these probabilities, initial probability of benign motion
is chosen higher than the others due to the maneuver percentages
of the benchmark targets. The choice of the initial probabilities
does not totally affect the overall system performance [25].

• PDAF Parameters: The PDAF gate threshold parameter, γ, is a
Chi-square distributed random variable with degrees of freedom
equal to the measurement size. If the gate probability, Pg,
which is defined as the probability of a measurement being inside
the validation region, is chosen as 0.99, then γ = 11.3 for 3D
measurement vector size of position only case as stated in [25].
When both position and Doppler measurements are used in the
same measurement vector of size 4, γ should be chosen as γ =
13.3 [25].

• Definition of Model Transition Probabilities: Model transition
probabilities are calculated dynamically as [31]: Π(δk) =
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1− 0.05δk 0.05(1− p11(δk)) 0.95− 0.95p11(δk))
0.05(1− p22(δk)) 1− 0.25δk 0.95(1− p22(δk))
0.33(1− p33(δk)) 0.67(1− p33(δk)) max(1− δk, δ

min
k )




2.5.4. Track Initiation Parameters

In this study, tracks are assumed to be already initiated and a detailed
examination about track initiation with position only and position plus
Doppler velocity cases are discussed in [9]. In order to determine the
initial values of state vector, x̂0, and its covariance matrix, P̂0, four
consecutive measurements are utilized in a least square estimation [30].

2.5.5. Track Update Interval Parameters

The value of track update interval parameter, η, is tested with the
simulations of benchmark targets and the best value is chosen as
η = 0.45.

3. RESULTS OF SIMULATED CASES

In this section, simulation results of track association and maintenance
are provided for position only (PO) and position plus Doppler velocity
(PD) cases. All the quantitative values provided in the below tables
are the averages of the Monte-Carlo runs that are performed according
to the defined radar scenario of Section 2.

The major discriminant of clutter from the airborne benchmark
targets is the Doppler velocity. The basic expectation, or the reference
case, can be built around a simulation scenario where there is no
significant clutter (Pfa = 0), and there is no missed detection (Pd = 1).
The performance of the tracker is quantified according to the Track
Update Interval (~), Track Maintenance Rate (ytmr), RMS Position
Estimation Error (hpos), Probability of Detection (Pdt), and Data
Processing Time (tdp). For the six benchmark targets, the performance
measures for the PO and PD cases are provided in Table 2. The
performance improvement for ~ should be observed as it gets longer
for any given scenario. In Table 2, when the six benchmark targets are
investigated in terms of PO, the track update interval, ~, gets smaller
for highly maneuvering targets. For example, for Target 1, ~ = 2.48
and for Target 6, it is equal to 2.19. When Doppler measurements
are included into the tracker as in PD case, ~ increases to 2.52 for
Target 1 and 2.33 for Target 6. Even when there is no clutter and no
missed detection, direct measurements of Doppler provides significant
improvement for Track Update Interval. For the case of no clutter
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and no missed detection, it is expected that the second performance
measure of Track Maintenance Rate to stay constant around 1.0. In the
reference case provided in Table 2, this performance parameter stays
practically constant for all targets and for both PO and PD cases.
The RMS Position Error for PO case across all targets decreases when
Doppler velocity is included into the tracker directly, even for cases
when the ~ gets longer. For example, hpos reduces to 43 from 48 for
Target 1, an improvement of 10.4%. The hpos for the most maneuvering
target, Target 6, is reduced to 47 from 51. The probability of detection
and the average processing time parameters, as expected, stay nearly
constant around unity and 1 ms for all targets and for both PO and
PD cases, respectively.

The effect of clutter in the tracker can be observed through the
increasing values of Pfa. In order to investigate the performance
improvement of PD case, a new simulation scenario set is run where

Table 2. Performance measures of TAM unit for Pfa = 0 and Pd = 1
(ideal case) where PO and PD indicate the performance for position
only and position plus Doppler velocity measurements, respectively.

Performance Measures
Target Number

1 2 3 4 5 6

Track Update Interval (sec.)
PO 2.48 2.35 2.29 2.26 2.40 2.19
PD 2.52 2.40 2.40 2.37 2.50 2.33

Track Maintenance Rate
PO 1.00 0.98 0.96 0.99 0.99 0.95
PD 0.99 1.00 0.96 0.98 0.98 0.95

RMS Position Error (m)
PO 48.0 41.0 67.0 29.0 52.0 51.0
PD 43.0 37.0 60.0 26.0 50.0 47.0
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Figure 2. Track Update Interval estimation of TAM unit for the
benchmark targets and various Pfa values (Pd = 0.80).



270 Kural et al.

Pd is kept constant at 0.8 and probability of false alarm is varied from
Pfa = 1 × 10−5 to Pfa = 9 × 10−5. The five performance measures
are recorded for all six benchmark targets for both PO and PD cases.
The average values of the Monte-Carlo runs are provided in Figure 2
to Figure 5. In Figure 2, the performance measure is the Track Update
Interval. For Target 1, ~ = 1.81 and for Target 6, it equals 1.43, both
for PO case and Pfa = 1×10−5. When Doppler velocity is incorporated
into the tracker as in PD case, ~ increases to 1.98 for Target 1 and 1.70
for Target 6. Another observation about ~ is that when increasing false
alarm rate from Pfa = 1× 10−5 to Pfa = 9× 10−5, ~ values in general
decrease for both PO and PD cases. However, for PD case, the rate
of decrease in ~ for each Pfa is very small with respect to that of PO
case. For example, ~ decreases from 1.81 to 0.98 for Target 1 and PO
case. For the PD case and the same target, ~ decreases from 1.98 to
1.83. Depending on the values of Pfa, the rate of increase in track
update interval with respect to PO case varies between 9% (for Target
1, Pfa = 1× 10−5) and up to 112% (for Target 3 and Pfa = 9× 10−5)
as shown in Figure 2 when Doppler velocity measurement is used.

In Figure 3, the performance measure is the Track Maintenance
Rate. For PO case and Pfa fixed at 1 × 10−5, ytmr is 0.84 for Target
1, and ytmr = 0.64 for Target 6. For PD case, relatively increased
values are recorded as 0.88 and 0.86, respectively. For each target,
when Pfa increases, ytmr values decrease for both PO and PD cases.
For instance, for Target 1, ytmr reduces from 0.84 to 0.02 for PO
case. For the same target and PD case, ytmr values decrease from
0.88 to 0.29 with increasing Pfa. However, for PO case, the rate
of decrease in ytmr for each Pfa is more than the reduction in PD
cases. In PD cases, clutter based detections may also be associated
with the target of interest due to the fact that the Doppler profiles
of the benchmark targets 1, 4, 5 and 6 include zero Doppler values
between positive and negative Doppler transitions (zero crossings) [11].
This will lead to a decrease of ytmr, even if the Doppler velocity
measurements are used. Also, for the benchmark Target 2 and Target
3 which have no zero crossing Doppler velocities, increasing Pfa still
results in decreasing values of ytmr although the Doppler velocity
measurements are employed. This is explicitly due to the fact that 3D
false position measurements within 4D measurements are very close
to the predicted position vector. Such an event occasionally causes
those false measurements being in the association region set by the
PDAF algorithm. Therefore, increasing Pfa also decreases the ytmr

for PD case for these targets. Nevertheless, for the PD cases, and for
high values of Pfa, a very significant enhancement in ytmr is achieved
compared to those of the PO cases.
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In Figure 4, the performance of hpos for both PO and PD cases
is provided for increasing Pfa values. For example, for Target 1 and
Pfa = 1 × 10−5, hpos is 84 and 58 for PO and PD cases, respectively.
It is recorded as 173 and 79 for Pfa = 9 × 10−5, for PO and PD
cases, respectively. Although ~ increases and, in effect, less number
of revisits provided for the PD case, hpos decreases due to the effect
of the use of Doppler velocity measurements in the TAM algorithm.
Furthermore, when increasing Pfa and the maneuver capabilities of the
targets, hpos values are raised for both PO and PD cases. Still, the
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Figure 3. Track Maintenance Rate estimation of TAM unit for the
benchmark targets and various Pfa values (Pd = 0.80).
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Figure 5. Average Processing Time estimation of TAM unit for
various Pfa values (Pd = 0.80).

rate of increment for PD case for each Pfa is very small compared to
PO case. The rate of decrease in hpos for PD case is between 20% (for
Target 3, Pfa = 1×10−5) and up to 67% (for Target 2, Pfa = 9×10−5)
as shown in Figure 4.

In Figure 5, the average processing time estimation for both PO
and PD cases are provided. Under normal operating conditions, it may
be expected that the processing time increases in PD cases due to the
increasing size of of matrices in TAM algorithms. However, due to the
detractive effect of Doppler velocity measurements on false alarms, the
average processing time still decreases up to 12.5% (for Pfa = 9×10−5)
in case of Doppler velocity measurements with respect to PO case. It
is also expected that increasing Pfa should increase tdp, as well. This
expectation is observed in Figure 5. For example, for PO case average
tdp is 1.05ms and 1.32ms for Pfa = 1 × 10−5 and Pfa = 9 × 10−5,
respectively. Again, it is obtained for the same false alarms as 1.03ms
and 1.15 ms for PD case.

Probability of detection parameters for both PO and PD cases
are quite similar and it approaches the probability of detection value
of the DSP unit (Pd = 0.80).

4. CONCLUSIONS

In this paper, the performance improvement for a multi function
phased array radar is investigated when Doppler velocity measurement
is incorporated into the track association and maintenance algorithms.
Incorporating the Doppler velocity measurements into commonly
preferred IMMPDAF estimator with adaptive sampling policy is
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simulated and the performance measures are compared with those cases
where only 3D position measurements are used. It has been observed
that using Doppler velocity measurements in track association and
maintenance leads to increased track update interval with the values
of between 9% and up to 112%. The RMS position estimation error is
decreased by an amount of 20% to 67% with respect to the position only
case. The average processing time for position and Doppler velocity
case is also decreased by an amount of up to 12.5%.

The results show that Doppler velocity measurements strongly
enhance the performance of TAM unit of an MFPAR resulting in saving
of energy resources of MFPAR with less number of revisits. Besides,
for the same amount of energy, more number of targets can be tracked
leading to the increased track capacity. Again, more time and resource
can be allocated for the search function. Furthermore, due to the more
accurate tracking capability with the Doppler velocity measurements,
more successful weapon engagement for the targets under track can be
provided.
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