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Abstract—In this correspondence paper, the problem of noncoherent
detection of a sinusoidal carrier is considered in the presence of Gaussian
noise. The convexity properties of the detection probability are character-
ized with respect to the signal-to-noise ratio (SNR). It is proved that the
detection probability is a strictly concave function of SNR when the false
alarm probability α satisfies α > e−2, and it is first a strictly convex func-
tion and then a strictly concave function of SNR for α < e−2. In addition,
optimal power allocation strategies are derived under average and peak
power constraints. It is shown that ON–OFF signaling can be optimal for
α < e−2 depending on the power constraints, whereas transmission at a
constant power level that is equal to the average power limit is optimal in
all other cases.

Index Terms—Detection, Neyman-Pearson, noncoherent, probability of
detection, convexity, power allocation.

I. INTRODUCTION

Noncoherent detection is employed in various wireless applications
due to its practicality and low complexity [1], [2]. In the noncoherent
detection framework, the receiver does not exploit the phase infor-
mation of the carrier, which modulates the message signal. In this
paper, the problem of noncoherent detection of a modulated sinusoidal
carrier is considered [2, pp. 65–72]. In this problem, the detection
probability can explicitly be obtained in terms of the false alarm prob-
ability and signal-to-noise ratio (SNR). The aim in this paper is to
investigate the convexity properties of the detection probability with
respect to SNR and consequently to develop optimal power alloca-
tion strategies for noncoherent detection of a modulated sinusoidal
carrier.

Convexity properties of error probability and detection probability
are analyzed in various studies in the literature, such as [3]–[5]. The
work in [3] investigates the convexity properties of the error probability
corresponding to the maximum likelihood (ML) detector for a binary
hypothesis-testing problem. The theoretical analysis reveals that the
error probability of the ML detector is convex with respect to the signal
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power when the noise has a unimodal distribution [3]. The results in
[3] are extended to the multi-dimensional case in [4] by employing
the ML detector for additive white Gaussian noise (AWGN) channels
with flat and non-flat fading. It is shown that when the dimension of
the constellation is less than or equal to two, the symbol error rate is
always convex in SNR. On the other hand, when the dimension is larger
than two, the symbol error rate is concave at low SNRs and convex at
high SNRs [4]. In [5], the convexity properties of the detection prob-
ability are investigated in the Neyman-Pearson (NP) framework. It is
proved that the detection probability is strictly concave in SNR when
the false alarm probability α satisfies α ≥ Q(2) and has two inflec-
tion points when α < Q(2), where Q(·) denotes the Q−function[5].
Based on this result, the optimal power allocation strategy is pro-
posed for α < Q(2), which can significantly improve the detection
probability in some cases via time sharing between different power
levels.

In this paper, we consider the noncoherent detection problem for a
modulated sinusoidal carrier within the NP framework [2, pp. 65–72].
The main contribution of this paper is to characterize the convexity
properties of the detection probability with respect to SNR for all
levels of false alarm probability, which is not available in the liter-
ature. We prove that the detection probability is strictly concave in
SNR when the false alarm probability satisfies α > e−2, and starts
as a strictly convex function and continues as a strictly concave
function of SNR for α < e−2. Due to the existence of the convex
region for α < e−2, the detection probability performance can be
improved via time sharing between different power levels, which is
analyzed by characterizing the optimal power allocation under aver-
age and peak power constraints. It is shown that, for α < e−2, on-
off signaling can facilitate significant improvements in the detection
performance when the average power constraint is less than a fixed
value.

II. SYSTEM MODEL

Consider the problem of noncoherent detection of a sinusoidal
carrier in the presence of Gaussian noise. Namely, the aim is
to decide between two hypotheses H0 versus H1 based on a
vector-valued observation Y = [Y1, . . . , Yn ]T , which is described as
follows:

H0 : Yk = Nk , H1 : Yk =
√

Psk (θ) + Nk , for k = 1, . . . , n (1)

where the noise components Nk are zero-mean independent and iden-
tically distributed (i.i.d.) Gaussian random variables with variance σ2

for k = 1, . . . , n, parameter P determines the power of the transmitted
signal, and s(θ) = [s1(θ), . . . , sn (θ)]T is a vector-valued function of
θ, with sk (θ)’s being samples from a modulated sinusoidal carrier as
follows [2, p. 65]:

sk (θ) = ak sin ((k − 1)ωc Ts + θ) for k = 1, . . . , n (2)

In (2), wc is the carrier (angular) frequency, Ts is the sampling interval,
a1, . . . , an are samples of bandlimited waveform a(t) which modulates
the sinusoidal carrier, and θ is the unknown phase of the carrier, which is
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modeled by a uniform random variable over [0, 2π) that is independent
of the noise components. It is assumed that nωc Ts = 2πm for some
integer m, and n/m (i.e., the number of samples taken per cycle of the
sinusoid) is an integer larger than one [2].

Averaging over the uniform distribution of the phase θ and assuming
that a2

1, . . . , a
2
n vary slowly compared to twice the carrier frequency,

the likelihood ratio for the problem specified by (1) and (2) can be
expressed as

L(y) = e
− n a 2P

4σ 2 I0(rP/σ2), (3)

where a2 = 1
n

∑n
k= 1 a2

k , I0(·) is the zeroth order modified Bessel

function of the first kind, i.e. I0(x) = (1/2π)
∫ 2π

0 ex cos θ dθ and
r =

√
y2

c + y2
s , with yc =

∑n
k= 1 ak yk cos ((k − 1)ωc Ts ) and ys =

∑n
k= 1 ak yk sin ((k − 1)ωc Ts ). From (3) and the monotonicity of

I0(·), the optimum likelihood ratio test can be implemented by com-
paring r against a threshold. Then, the optimum size-α NP decision
rule can be specified as [2, p. 70]

r
H1

�
H0

(
nσ2a2 log(1/α)

)1/2
(4)

Let γ � na2P/(2σ2) represent the SNR. The decision rule in (4)
achieves the following probability of detection:

Pd (γ, α) = Q1

[√
γ,

√
−2 log α

]
, (5)

where α is the false alarm probability and Q1[y, b] is
Marcum’s Q-function of order 1, which is given by Q1[y, b] =
∫ ∞

b
te−(t2+ y 2)/2I0(ty) dt [2].

III. CONVEXITY PROPERTIES IN SIGNAL POWER AND

OPTIMAL POWER ALLOCATION

In this section, the aim is to analyze the convexity properties of the
detection probability in (5) with respect to SNR (or, equivalently signal
power), and subsequently to develop optimal power allocation strate-
gies that achieve the maximum average detection probability under
average and peak power constraints.

A. Convexity/Concavity Results

We start with analyzing the convexity of Q1

[√
γ,

√−2 log α
]

in
(5) with respect to γ. To simplify the notation, the following defini-
tion is employed: f (α) �

√−2 log α. Then, (5) becomes Pd (γ, α) =
Q1[

√
γ, f (α)].

Before analyzing the convexity of Pd (γ, α), it is recalled from
[6, Thm. 1] that Pd (γ, α) is monotone increasing with respect to γ.
Then, the following proposition characterizes the behavior of Pd (γ, α)
for α > e−2.

Proposition 1: If the false alarm probability satisfies α > e−2, then
Pd (γ, α) is a strictly concave and monotonically increasing function
of γ for all γ ∈ [0,∞).

Proof: From [7, Eq. (16)], the second derivative of Q1[
√

γ, f (α)]
with respect to γ can be expressed as

d2

dγ2
Q1 [

√
γ, f (α)] = (−2)−2

2∑

p= 0

(−1)p

(
2
p

)

Q1+ p [
√

γ, f (α)]

=
1
4

(Q1[
√

γ, f (α)] − 2Q2[
√

γ, f (α)]

+Q3[
√

γ, f (α)]) (6)

where Qi [· , ·] denotes Marcum’s Q-function of order i. Then, via the
recurrence relation of Marcum’s Q-function in [7, Eq. (2)], (6) can be
written as:

d2

dγ2
Q1[

√
γ, f (α)] =

1
4

f (α)√
γ

e−
γ + ( f (α ) ) 2

2

×
(

f (α)√
γ

I2(
√

γf (α)) − I1(
√

γf (α))
)

,

(7)

where Ii (·) denotes the ith order modified Bessel function of the
first kind. To prove the concavity, it is sufficient to consider the sign
of

( f (α )√
γ

I2(
√

γf (α)) − I1(
√

γf (α))
)

as the other terms are posi-
tive in (7). From the inequality given in [8, Eq. (2.21)], it is known
that

I2(
√

γf (α)) < I1(
√

γf (α))
√

γf (α)
4

· (8)

Therefore, it follows that

f (α)√
γ

I2(
√

γf (α)) − I1(
√

γf (α)) <

(
f (α)2

4
− 1

)

I1(
√

γf (α))

(9)
From (9), it is noted that if f (α)2 < 4 (equivalently, if α > e−2 ),

f (α)√
γ

I2(
√

γf (α)) − I1(
√

γf (α)) < 0 (10)

is obtained, which concludes the proof. �
Next, to investigate the convexity properties of Pd (γ, α) for α <

e−2, the following lemmas are presented, which are proved in the
Appendix.

Lemma 1: If α < e−2, there exists γ̂ > 0 such that the sec-
ond derivative of Pd (γ, α) with respect to γ is positive for
γ ∈ [0, γ̂].

Lemma 2: If α < e−2, there exists γ̃ such that the second
derivative of Pd (γ, α) with respect to γ is negative for all
γ ≥ γ̃.

Lemma 3: For α < e−2, there exists a unique inflection point γ∗

such that P ′′
d (γ∗, α) = 0, where P ′′

d (γ∗, α) denotes the second deriva-
tive of Pd (γ, α) with respect to γ evaluated at γ∗.

Based on Lemma 1, Lemma 2, and Lemma 3, the convexity prop-
erties of Pd (γ, α) are characterized in the following proposition when
the false alarm probability satisfies α < e−2.

Proposition 2: For α < e−2, there exists γα > 0 such that Pd (γ, α)
is a strictly convex and monotonically increasing function of γ in [0, γα )
and a strictly concave and monotonically increasing function of γ in
[γα ,∞).

Proof: The proof follows from [9, Thm. 1], Lemma 1, Lemma 2,
Lemma 3, and the Intermediate Value Theorem. �
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Proposition 1 together with Proposition 2 characterize the convexity
properties of the detection probability for all possible values of the
false alarm probability α.1

B. Optimal Power Allocation

In this section, enhancement of detection performance via time shar-
ing among different power levels is investigated. Consider a general
time sharing strategy with time sharing factors {λi}M

i= 1 and correspond-
ing SNR values {γi}M

i= 1, where M denotes the number of SNR levels
that can be employed during the time sharing operation, and λi ’s are
nonnegative and sum to one. Then, the aim is to obtain the optimal
strategy that maximizes the average detection probability under aver-
age and peak SNR (equivalently, power) constraints. Mathematically
stated,

max
{λi ,γ i }M

i = 1

M∑

i= 1

λiPd (γi , α) (11a)

subject to
M∑

i= 1

λi γi ≤ Γavg ,
M∑

i= 1

λi = 1 (11b)

0 ≤ γi ≤ Γpeak , λi ≥ 0 i = 1, . . . , M (11c)

where Γavg ≤ Γpeak is assumed.
Since the detection probability is a monotonically increasing func-

tion of γ, the solution of (11) always operates at the average SNR
limit Γavg . In addition, for α > e−2, based on the strict concavity
of the detection probability with respect to SNR (Proposition 1), it
can be deduced that the solution of (11) is given by λ∗

k = 1, λ∗
i = 0

for i ∈ {1, . . . , M} \ {k} and γ∗
k = Γavg for any k ∈ {1, . . . , M}. In

other words, when α > e−2, time sharing is not employed, and a con-
stant transmission power that corresponds to the average SNR limit,
Γavg , is used all the time.

On the other hand, for α < e−2, there exists an interval over which
the detection probability is convex (Proposition 2). Hence, improve-
ments in detection probability can be achieved via time sharing under
certain scenarios. To characterize the optimal time sharing strategy (i.e.,
the solution of (11)) for α < e−2, the following lemma is presented first,
which is proved in the Appendix.

Lemma 4: Let γα be the unique inflection point of Pd (γ, α) for
α < e−2. Then, there exists γt > γα such that the line passing through
points (0, Pd (0, α)) and (γt , Pd (γt , α)) is tangent to Pd (γ, α) at γt ,
and lies above Pd (γ, α) for all γ > 0.

Based on Lemma 4, the optimal time sharing strategy for α < e−2

can be described as follows:
Proposition 3: Let α < e−2 and γt be the tangent point defined as

in Lemma 4.
i) If γt ≤ Γavg , the optimal strategy is to employ Γavg all the time.

ii) If Γpeak ≥ γt > Γavg , the optimal strategy is to time share be-
tween SNRs of 0 and γt , with fraction of time Γavg /γt allocated
to the SNR of γt .2

1It is worth mentioning that inflection point γα can easily be computed via a
bisection search [5] since it is a root of the following equation: v1(γα f (α)) =
(f (α))2, as shown in the proof of Lemma 3.

2In practice, time sharing between different SNR values can be implemented
by time sharing between different transmitter powers, controlled by the param-
eter P in (1).

iii) If γt > Γpeak , the optimal strategy is to time share between
SNRs of 0 and Γpeak , with fraction of time Γavg /Γpeak allo-
cated to the SNR of Γpeak .

Proof: Let the average SNR in (11b) and the average detection
probability (objective function) in (11a) be denoted by

∑M
i= 1 λi γi �

γ̄ and
∑M

i= 1 λiPd (γi , α) � P d (γ̄, α), respectively. Consider (i) and
(ii), where γt ≤ Γpeak . Let γ̄ be an average SNR. Then, according
to the proposed strategy, the following average detection probability is
achieved:

P
∗
d (γ̄, α) =

⎧
⎨

⎩

Pd (γ̄, α) , if γ̄ ∈ (γt , Γpeak ]

Pd (0, α) + λ γ̄ , if γ̄ ∈ [0, γt ]
(12)

where λ = (Pd (γt , α) − Pd (0, α))/γt . Since the aim in (11) is to max-
imize the average detection probability via time sharing, it can be shown
that the optimal solution resides on the upper boundary of the convex
hull of the γ versus Pd (γ, α) curve for γ ∈ [0, Γpeak ] (see, e.g., [10]
for a similar scenario). Therefore, the proposition can be proved by
showing that P

∗
d (γ, α) in (12) is the smallest concave function which

is greater than or equal to Pd (γ, α); i.e., P
∗
d (γ, α) forms the upper

boundary of the convex hull. First, it is clear that P
∗
d (γ, α) is a con-

cave function of γ. Hence, for γ > γt , P
∗
d (γ, α) in (12) becomes

the upper boundary of the convex hull by definition. For γ ∈ [0, γt ],
suppose, towards a contradiction, that P

∗
d (γ, α) is not the smallest con-

cave function greater than or equal to Pd (γ, α). This implies that there
exists another function g1(γ, α) which is concave and greater than or
equal to Pd (γ, α), and that there exists x ∈ [0, γt ] such that g1(x, α) <

P
∗
d (x, α). As x ∈ [0, γt ], there exists 0 < β < 1 such that x = βγt .

Then, by the concavity of g1, it is clear that g1(x, α) ≥ βg1(γt , α) +
(1 − β)g1(0, α). Since g1 is greater than or equal to Pd (γ, α),
it is concluded that g1(x, α) ≥ βg1(γt , α) + (1 − β)g1(0, α) ≥
βPd (γt , α) + (1 − β)Pd (0, α) = P

∗
d (x, α), which contradicts the as-

sumption of g1(x, α) < P
∗
d (x, α). Hence, it is proved that P

∗
d (γ, α)

is the smallest concave function greater than or equal to Pd (γ, α). In
addition, since P

∗
d (γ, α) is monotone increasing (due to the monotone

increasing nature of Pd (γ, α)), the optimal value of (11a) is equal to
P

∗
d (Γavg , α), which can be achieved by the strategies specified by (i)

or (ii) depending on the value of Γavg . The proof for case (iii), i.e.,
Γpeak < γt , can be obtained in a similar fashion. �

Proposition 3 states that when α < e−2, time sharing becomes ben-
eficial if the average power limit (equivalently, the average SNR limit)
is lower than a certain threshold. In that case, on-off signaling is the op-
timal strategy, and the duration of the silent period and the transmitted
power level are determined according to the average and peak power
limits.

Remark: The power allocation strategy can be implemented in prac-
tice as follows: Suppose that the statistical model in (1) is valid for Ns

consecutive transmissions (observations). First, γt defined in Lemma 4
is calculated. Then, if the condition in Proposition 3-(i) is satisfied,
the same power level (corresponding to SNR Γavg ) is used for all
(Ns ) transmissions. If the condition in Proposition 3-(ii) is satisfied,
round(NsΓavg /γt ) out of Ns transmissions occur with a constant
power level corresponding to SNR γt , and nothing is transmitted during
the remaining slots (corresponding to zero power). A similar approach
is adopted if the condition in Proposition 3-(iii) holds.
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Fig. 1. Probability of detection versus γ for various values of the false alarm
probability α. The dashed lines correspond to the upper boundaries of the
convex hulls of Pd (γ, α) curves, which are attained via on-off signaling, as
stated in Proposition 3. The cross signs indicate the results of the Monte-Carlo
simulations.

IV. NUMERICAL EXAMPLES AND SIMULATIONS

In this section, we provide numerical examples and simulations to
illustrate the theoretical results of the previous section. Fig. 1 shows
the probability of detection in (5) versus SNR, γ, for various values of
the false alarm probability α. The cross (× ) signs in the figure indi-
cate the results of the Monte-Carlo simulations, which match perfectly
with the theoretical results (dashed and straight lines), as expected. As
stated in Propositions 1 and 2, the probability of detection is a concave
function of SNR for α > e−2 ≈ 0.135, and initially a convex and then
a concave function of SNR for α < e−2. The optimal power alloca-
tion strategies can also be deduced from Fig. 1 as follows: Suppose
that Γpeak = 50. Then, the optimal strategy is to operate at the aver-
age power limit for α = 0.5 and α = e−2 due to the concavity of the
probability of detection. On the other hand, for α = 10−2, α = 10−4,
and α = 10−6, the optimal strategy is to time share between SNRs
of 0 and γt , with fraction of time Γavg /γt allocated to the SNR of
γt (see Proposition 3), where γt is equal to 9.685, 23.76, and 36.6
for α = 10−2, α = 10−4, and α = 10−6, respectively. For example, for
α = 10−4 and Γavg = 10, the probability of detection can be improved
from 0.161 to 0.318 via time sharing between SNRs of 0 and 23.76. The
dashed lines in Fig. 1 indicate the probability of detection values that
can be achieved via time sharing (on-off signaling) in the considered
scenario. It is noted that time sharing becomes more crucial for low
levels of false alarm probability, which is the case in many practical
scenarios.

V. EXTENSION TO FADING CHANNELS

Although no fading is considered in the analysis in Section III, the
results are also valid for frequency-flat block-fading channels assuming
that perfect channel power gain information is available at the transmit-
ter and peak/average power constraints are imposed over the duration
of block-fading. In particular, considering the following observation

model

H0 : Yk = Nk , H1 : Yk =
√

Phsk (θ) + Nk , for k = 1, . . . , n

(13)
where h > 0 is the channel power gain, the only modification
in the formulations would be to scale SNR (γ) with the known
channel power gain h. Under the block-fading channel model,
the proposed optimal power allocation approach can be employed
within each block. If the transmitter does not have perfect chan-
nel power gain information, then the detection probability achieved
by the proposed optimal signaling method based on perfect in-
formation can be regarded as an upper bound on the detection
performance.

If power allocation is applied over different fading blocks, then the
convexity properties of the average detection probability should be
considered to determine the optimal power allocation strategy. It is
noted that for a given value of h in (13), the size-α NP decision rule
in (4) is still optimal since the detector threshold does not depend on
P or h. By defining γ � na2Ph/(2σ2), it is seen that the detection
probability of the optimum size-α NP detector for fixed channel power
gain h is in the same form as that given in (5). By treating the chan-
nel power gain h as a random variable, the detection probability can
be averaged over the distribution of h (or, equivalently γ). Since the
resulting average detection probability is a function of the transmit
power P , its convexity properties w.r.t. P can be identified and the op-
timal power allocation under peak and average power constraints can
be determined. To this end, we compute the average detection prob-
ability of the proposed detector under Rayleigh block-fading in the
following.

For the Rayleigh fading scenario, the probability density function
(PDF) of h is given by fh (h) = (1/h)e−h/h for h ≥ 0. For conve-
nience, define ρ � na2P/(2σ2); then γ = ρh and γ = Eh [γ] = ρh,
where Eh [·] represents expectation w.r.t. fading power distribution.
Denote the average detection probability under Rayleigh fading as
Pd (γ, α). Then, from (5) and [11, Eq. (30)], Pd (γ, α) can be calcu-
lated as follows:

Pd (γ, α) =
∫ ∞

0

1

h
e
− h

h Q1

[√
ρh,

√
−2 log α

]
dh

=
∫ ∞

0

1

h
e
− u 2

h Q1

[
u
√

ρ,
√

−2 log α
]
2u du

= α
1

1+ ρ h̄ / 2 = α
1

1+ γ̄ / 2 . (14)

The second derivative of the average detection probability with respect
to the average SNR at the receiver, denoted by Pd

′′
(γ, α), can be

computed as

Pd
′′
(γ, α) = α

1
1+ γ̄ / 2

1
2(1 + γ/2)3

ln(α)
(

ln(α)
2(1 + γ/2)

+ 1

)

(15)

Since 0 < α < 1, it is noted that

Pd
′′
(γ, α) > 0 ⇐⇒ γ < − ln(α) − 2 (16)

Therefore, it is concluded that if α > e−2, the average probability of
detection is always concave with respect to γ. Otherwise Pd (γ, α)
is a strictly convex function of γ for γ < − ln(α) − 2 and a strictly
concave function of γ for γ > − ln(α) − 2. Due to the similarity of
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the convexity properties of the average detection probability to those
of the non-fading scenario in Section III-A, the power allocation ap-
proach in Section III-B can also be employed for Rayleigh block-fading
channels.

VI. CONCLUDING REMARKS

In this paper, for optimal noncoherent detection of a modulated si-
nusoidal carrier, the convexity properties of the detection probability
have been characterized with respect to the SNR for all values of the
false alarm probability. Since required levels of false alarm probability
are lower than e−2 ≈ 0.135 in almost all practical applications, time
sharing in the form of on-off signaling may prove useful for enhanc-
ing the noncoherent detection performance of a modulated sinusoidal
carrier.

An important direction for future work is to characterize the
convexity properties of the detection probability for fast fading
channels.

APPENDIX

A. Proof of Lemma 1

Since the second derivative of Pd (γ, α) is continuous with re-
spect to γ, the statement in the lemma can be proved by showing
that

lim
z ↓0

∂2Pd (γ, α)
∂γ2

∣
∣
∣
γ = z

> 0 (17)

for α ∈ (0, e−2). In other words, the condition in (17) guarantees that
there exists γ̂ > 0 such that Pd (γ, α) is convex in [0, γ̂]. Towards the
aim of proving (17), the second derivative of Pd (γ, α) with respect to
γ is obtained as follows:
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γ cos θ dθ. Then, the following three results are utilized
in the proof.
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Here, the proof for (19) is provided ((20) and (21) can be shown
in a similar fashion). Notice that from the monotonicity of I0(·) for

γ ∈ [0, 1], it follows that e−
γ
2 1

4 xe−
x 2
2 I0(

√
γx) ≤ xe−

x 2
2 I0(x). Since
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2 I0(x) is integrable, by the Dominated Convergence Theorem,

the expression on the left-hand-side (LHS) of (19) can be written as
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Since limγ ↓0
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proved. In a similar manner, it can be shown that limγ ↓0 g(x, γ) = x2/4
and limγ ↓0 h(x, γ) = x4/32.

By combining the results in (19)–(21) with (18), it is seen that
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Then, it is obtained that
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Thus, the expression on the LHS of (24) is positive if and only if
f (α)2 > 4, which is satisfied if and only if α < e−2. �

B. Proof of Lemma 2

Similar to the proof of Proposition 1 (see (7)), we consider the
sign of
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This sign determines the convexity/concavity of the detec-
tion probability. From [12, Cor. 1], it can be seen that
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γf (α) ≥ 2. Therefore, the statement in the
lemma follows directly for γ ≥ max{(f (α))2, 2/(f (α))2}. Namely,
it is sufficient to choose γ̃ = max{(f (α))2, 2/(f (α))2} for a
fixed α. �

C. Proof of Lemma 3

From (7), notice that if P ′′
d (γ∗, α) = 0 for γ∗ < ∞, then γ∗ must be

a root of f (α )√
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Since I1(·) > 0, γ∗ must be a root of
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can be expressed as
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where v1(x) � xI1(x)/I2(x) As stated in [9] and [13], v1(x) is a
strictly increasing function for positive x. Therefore, in our case,
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√
γ f (α )) is a strictly decreasing function of γ, which implies that

there must be at most one root of (27); hence, there is at most one finite
root of P ′′

d (γ, α). Based on Lemma 1 and 2, there is at least one finite
root of P ′′

d (γ, α) when α < e−2 by the Intermediate Value Theorem.
Therefore, there exists a unique inflection point. �

D. Proof of Lemma 4

To prove Lemma 4, the following result is obtained first.
Lemma 5: limγ→∞ Pd (γ, α) = 1.
Proof: From [14, Eq. (4)], the detection probability can be lower

bounded for
√

γ ≥ f (α) as follows:

Q1[
√

γ, f (α)] ≥ 1 − 1
2

(

e−
(
√

γ −f (α ) ) 2)
2 − e−

(
√

γ + f (α ) ) 2)
2

)

(28)

which can equivalently be written as
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For a fixed α, the right-hand-side (RHS) of (29) converges to 1 as
γ goes to ∞. Therefore, it is concluded that limγ→∞ Pd (γ, α) ≥ 1.
Also, as Pd (γ, α) is the probability of detection, it must be
less than or equal to 1. Hence, the statement in Lemma 5
follows. �

Let g̃(γ) denote the straight line passing through points (0, Pd (0, α))
and (γt , Pd (γt , α)), which has a slope of P ′

d (γt , α). Then,

g̃(γ) = g̃(0) + P ′
d (γt , α)γ (30)

where P ′
d (γt , α) is the first derivative of Pd (γ, α) with respect

to γ evaluated at γt . By definition, g̃(0) = Pd (0, α). First, it

is noted that Pd (0, α) =
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f (α ) xe−
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2 I0(0) dx. Since I0(0) = 1,

Pd (0, α) is calculated as Pd (0, α) = e
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2 = α. Therefore, the
existence of γt such that Pd (γt , α) = α + P ′

d (γt , α)γt will im-
ply the existence of the straight line. Define a new function as
h̃(γ) � Pd (γ, α) − α − P ′

d (γ, α)γ. If one can show that there ex-
ists γt �= 0 such that h̃(γt ) = 0, then the claim will be proved. No-
tice that h̃(0) = 0 and h̃′(γ) = P ′

d (γ, α) − P ′′
d (γ, α)γ − P ′

d (γ, α) =
−P ′′

d (γ, α)γ. From Proposition 2, h̃′(γ) < 0 if γ ∈ [0, γα ] and h̃′(γ) >
0 if γ ∈ (γα ,∞). Therefore, h̃ is a decreasing function in [0, γα ] and
an increasing function in (γα ,∞). Hence, it is sufficient to show that
limγ→∞ h̃(γ) > 0 since this dictates the existence of such a γt due to
the Intermediate Value Theorem.

From Lemma 5, the following relation is obtained:
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Therefore, if we can show that limγ→∞ P ′
d (γ, α)γ < 1 − α, then

limγ→∞ h̃(γ) > 0 will be proved. Notice that (Pd (γ, α) − 1) goes
to 0 and 1
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goes to 0 as γ goes to ∞. Then, by L’Hôpital Rule, the

following expressions are derived:
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Therefore, it can be deduced that limγ→∞(Pd (γ, α) − 1)γ = 0
if and only if limγ→∞ P ′

d (γ, α)γ2 = 0. Since 0 ≤ |P ′
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d (γ, α)γ2 = 0 implies that
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d (γ, α)γ = 0. Hence, proving that limγ→∞(Pd (γ, α) −
1)γ = 0 would be sufficient to conclude that limγ→∞ P ′

d (γ, α)γ = 0.
For this reason, we next compute limγ→∞(Pd (γ, α) − 1)γ. As
Pd is the detection probability, Pd (γ, α) − 1 ≤ 0; therefore,
limγ→∞(Pd (γ, α) − 1)γ ≤ 0. For the other direction, from [14,
Eq. (4)], it is known that for

√
γ ≥ f (α), Pd (γ, α) ≥ 1 −
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For a fixed α, the RHS of (35) converges to 0. Therefore,
limγ→∞(Pd (γ, α) − 1)γ ≥ 0. Hence, the converse direction is shown.
Overall, it is obtained that limγ→∞(Pd (γ, α) − 1)γ = 0. This im-
plies that limγ→∞ h̃(γ) = 1 − α > 0 as α < e−2, which concludes
the proof. �
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