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Abstract. The water-energy intertwined relationship has recently gained 
more importance due to the high water consumption in the energy sector and 
to the limited availability of the water resources. The energy and electricity 
demand of Turkey is increasing rapidly in the last two decades. More 
thermal power plants are expected to be built in the near future to supply the 
rapidly increasing demand in Turkey which will put pressure on water 
availability. In this study, the water consumption for electricity generation 
at Turkish power plants is investigated. The main objectives of this study are 
to identify the amount of water consumed to generate 1 kWh of electricity 
for each generation technology currently used in Turkey and to investigate 
ways to reduce the water consumption at power plants expected to be built 
in the near future to supply the increasing demand. The various electricity 
generation technology mixture scenarios are analyzed to determine the 
future total and per generation water consumption, and water savings based 
on changes of cooling systems used for each technology. The Long-range 
Energy Alternatives Planning (LEAP) program is used to determine the 
minimum water consuming electricity generation technology mixtures using 
optimization approaches between 2017 and 2035. 

1  Introduction 
Energy production is a water–intensive process in which water is used for fuel extraction, 
fuel processing, and electricity generation. Processes such as water treatment, desalination, 
water transportation, pumping require energy to provide water services. The energy and water 
related processes are closely interacted, thus this interaction is called water-energy nexus. 

The global demand for electricity, and hence electricity generation, is continuously 
increasing and this results in an increase in the amount of water consumed in these processes. 
The amount of water consumption depends on the technology used for electricity generation. 
Majority of the global electricity is generated at thermoelectric power plants which use 
significant amount of water especially at the cooling systems. Once through, wet closed loop, 
and dry cooling are the most common cooling systems used at thermoelectric power plants 
[1]. The once through cooling system withdraws a large amount of water from a nearby water 
body, such as ocean, river, lake, pond or canal. After this water passes through the condenser, 
it is sent back to the water body where it is withdrawn. This type of cooling system has low 
capital and operating costs, and has low water consumption which is indirectly consumed at 
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higher temperatures [1–3]. In the wet cooling towers, the water is pumped back to the cooling 
tower after condensing the steam. While this system does not withdraw large amounts of 
water, it consumes more water than the once through system during the evaporating process 
at the cooling tower [1, 4]. Another method used at thermoelectric power plants is the dry 
cooling system in which air flows across the steam in tube arrays to condense it [5].  

In some cases, the water deficiency can be a problem restricting the electricity generation 
at location where there is water scarcity. Hence, it is important to investigate the total amount 
of water used per generated electricity and also to specify the water consumption of the 
various processes during electricity generation at power plants. Since the most water 
consumption at the power plants occur at the cooling systems, it is important to focus on 
analyzing the water consumption at various types of cooling systems. 

In the open literature, there are many studies on determining the amount of water 
consumption per electricity generation (L/MWh) at the power plant. Macknick et al. analyzed 
the water consumption at various US power plants in 2011. They took into account the water 
consumption in the operational phase only. The results of their study showed that thermal 
power plants with wet cooling tower systems consume more water per unit of generated 
electricity than the once through cooling systems. Furthermore, the coal and lignite power 
plants consume the highest amount of water among all types of plants. Whereas; photovoltaic 
(PV) and wind as renewable power plants, and concentrated solar power (CSP), Stirling 
Engine technology, and natural gas combined cycle power plants with dry cooling systems 
have the lowest water consumption factors (WCF) [6].  

Delgado and her colleagues did not stop in just examining the water consumption data 
obtained from power plants, they also developed a simple model to determine the water 
consumption per generated electricity for a whole range of thermal power plants. The model 
is based on analyzing the water and heat flows in the power plants. In another study, Dale 
and his colleagues developed a model using two popular simulation tools (LEAP and WEAP) 
to define the impact of the climate change on the regional water and energy systems. In this 
study, data from some power plants at California is used to check the vulnerability of energy 
and water planning systems [7]. 

In US, many studies are conducted to compare the water consumption of alternative 
cooling systems of the electricity generation power plants. The systems are compared from 
several points, such as cost, the amount of water consumption, and environmental impacts. 
As a result, the amount of water consumption reduces nearly by 95% when wet cooling 
systems are replaced by dry cooling systems [8]. However, the dry cooling systems have 
lower efficiencies due to the heat capacity difference of water and air, and higher capital costs 
than those of the wet ones. 

This study covers two main objectives; one is to identify the amount of water consumed 
(m3) to generate 1 GWh of electricity based on each generation technology currently used in 
Turkey, and the other one is to investigate ways to reduce the water consumption per 
electricity generation at power plants expected to be built in the near future to supply the 
increasing demand. This paper contains four sections. In the first section, general background 
information about the study is presented. The second section includes the methodology that 
is used in water consumption calculations and the application of scenarios to the model. In 
the third section, the results and discussions are provided. The conclusions are given in the 
fourth section of the paper. 

2  Methodology  
The methodology of this study consists of multiple steps which can be divided into three 
main stages; data gathering and analysis, model development, and scenario applications. The 
following sections describe these three stages in detail.  
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2  Methodology  
The methodology of this study consists of multiple steps which can be divided into three 
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2.1 Data gathering and analysis 

The installed capacity, electricity production, cooling system type, fuel type, and technology 
data of all power plants operating in 2016 at Turkey (approximately 1581power plants of 
which 361 are thermoelectric power plants) are gathered from various sources [9–13]. The 
water consumption data of Turkish power plants are not available for public access. Thus, 
WCF (m3/GWh) for all power generation technologies currently operating in Turkey are 
gathered from several studies [6, 14, 15]. These factors are then used to calculate the water 
consumption of 361 thermoelectric power plants using the below equation. 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ ∑ (𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖,𝑗𝑗 × 𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝑗𝑗)𝑁𝑁
𝑗𝑗

𝑀𝑀
𝑖𝑖  (1) 

 
where, PPWC is the water consumption of all thermoelectric power plants (m3), GEN is the 
amount of electricity generated (GWh) at each thermoelectric power plant, WCF is the water 
consumption factor based on generation technology and cooling system type (m3/GWh), j is 
the power plant with specific cooling system in each generation technology, j is the power 
plant with specific generation technology, M is the number of power plant with specific 
cooling system in each generation technology, and N is the number of power plant with 
specific generation technology. 

2.2 Model development 

The electricity generation model based on various generation technologies is developed using 
Long Range Energy Alternatives Planning (LEAP) until 2035 taking 2016 as the base year. 
LEAP supports various electricity generation technologies and facilitates the tracking of the 
energy generation based on the available resources and demand estimates. LEAP operates at 
two levels; where built-in equations are used for energy, emissions, cost-benefit, etc. 
calculations, or these equations can be entered as spreadsheet-like expressions by the user 
[16].  

In the demand analysis part, the annual electricity demand estimates between 2017 and 
2035 obtained from [17] are entered to examine how the total electricity generation based on 
various technologies will be dispatched over the study period by applying various scenarios. 
In this study, the demand is specified as a single branch from the electricity generation over 
the analysis time.  

Electricity generation, distributing, and dispatching losses are placed in the 
transformation analysis section in LEAP. Power plant lifetime, efficiency, maximum 
availability, and operation and investment costs are the technical parameters in LEAP. The 
analysis process starts with calculating the electricity requirements for each year according 
to the dispatch rule, followed by the cost calculations. These steps are repeated for each year, 
for each module such as natural gas, coal, solar, etc. In this study, the transformation section 
just includes one branch which is electricity generation. The electricity generation includes 
the resources modules which are used to supply the electricity demand. As the distribution 
losses are not included in this study, the dispatch rule is used as the full capacity and the 
technical factors are entered for each module. The optimization model is based on water 
consumption for this study, however there is no factor that takes into account the water 
consumption in LEAP. Thus, the variable operation and maintenance cost parameter of the 
model is replaced by the WCF and the other costs are assumed to have a value of one unit 
for all modules. In addition to this, the renewable resources are limited in the maximum 
capacity section in LEAP using the potential of Turkey for each type [17]. The “Interpolation 
(Interp.)” function of LEAP is used in this study to calculate the straight-line change between 
specified pairs of data years and values [16]. After developing the model at LEAP, the 
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generation technology mixtures between 2017 and 2035 are optimized based on the scenarios 
given in Table 1. 

 
Table 1. Description of the scenarios applied to the model. 

 
Below are the assumptions applied to the scenarios listed Table 1. 

 All current power plants are assumed to operate between 2017 and 2035. 
 The renewable energy potential is assumed to be used gradually during the study 

period. 
 The share percentage of natural gas power plants is assumed to be between 30–40% 

over the years.  
 The first unit of the nuclear power plants will start to operate in 2022, and the 

remaining units will gradually start operating until 2029. 

3  Results and discussions 

In the first phase of the study, the detailed power plant data is analyzed to determine the total 
water consumption based on cooling systems for each technology. As presented in Table 2, 
majority of natural gas and  coal/lignite, all biogas, half of geothermal power plants use wet 
cooling towers which consume more water than once through or dry cooling systems.  

 
Table 2. WCF and 2016 sharing percentages of the cooling systems based on installed capacities. 

 
Technology/Fuel 

Type Wet Cooling Towers Once Through System Dry Cooling System 

Natural gas 749 m3/GWh – 48% 378 m3/GWh – 16% 7.5 m3/GWh – 37% 
Geothermal 5299 m3/GWh – 55% Not Available (NA) 511 m3/GWh – 45% 

Coal and lignite 2600 m3/GWh – 37% 946 m3/GWh – 53% 106 m3/GWh – 10% 
Biogas 889 m3/GWh –100% Not Available 132 m3/GWh – NA 
Nuclear 2543 m3/GWh – NA 1018 m3/GWh – NA Not Available 

 
By using the WCF determined from open literature for each cooling type used in each 

technology, total water consumption of each technology is calculated using Equation 1. The 
WCF for solar power plants is taken as 96 m3/GWh. These values are then used to determine 
the water intensity (WI) of each technology. As it can be seen in Table 3, the maximum 
amount of water is consumed at the coal/lignite power plants in 2016, since it has high 
electricity generation sharing percentage in parallel with the relatively high WCF as given in 
Table 2. While the geothermal power plants have generation share less than 2%, they resulted 
in high water consumption and the highest WI among all technology types. 
 

Scenario Name Scenario Description 

Business as usual 
(BAU) 

The distribution of each generation technology will not change over 
the period of the study and average WCF of the cooling technologies 
will be used for each generation technology. 

Optimization 
(OPT) 

Generation technology distribution will be optimized based on 
minimum water consumption. 

Dry cooling system 
(DCS_BAU) 

The distribution of each generation technology will not change over 
the period of the study and the cooling systems for all technologies, 
except nuclear, will be assumed as dry cooling system starting in 2016. 

DCS Optimization 
(DCS_OPT) 

Optimization will be conducted based on dry cooling system for all 
technologies, except nuclear, starting in 2016. 
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Table 3. Water consumption and water consumption intensity (WI) for 2016. 

Technology Type Generation 
(GWh) 

Generation 
Share, % 

Water Consumption 
(Thousand m3) 

Water Intensity 
(WI) (m3/GWh) 

Solar 612 0.2% 59 96 
Wind 15,370 5.7% 0 0 

Geothermal 4,214 1.6% 13,333 3,164 
Biogas 2,008 0.7% 1,790 891 

Hydropower 67,067 24.8% 0 0 
Natural gas 90,993 33.6% 38,292 420 
Coal/Lignite 90,262 33.4% 134,114 1,485 

Total 270,526 100% 187,588 693 
 
As presented LEAP program is used to determine the share distributions of the 

technologies between 2017 and 2035. For BAU and DCS scenarios, the shares of 
technologies in 2016 are assumed to be constant until 2022 as presents in  

Fig. 1. After the nuclear power plants start to operate in Turkey in 2022, the remaining 
generation is then divided based on the shares of 2016 for both scenarios. 

 

 
 
Fig. 1. Annual electricity generation shares for the BAU and DCS_BAU scenarios. 
 

The shares of technology types for the OPT scenario determined based on the 
optimization of minimum water consumption at LEAP program is presented in Fig. 2. As it 
can be seen here, the shares of technologies with high WCF, such as geothermal and 
coal/lignite power plants, are replaced by the ones with lower WFC. Even though, the 
coal/lignite power plants have high WCF, their shares increase slightly after 2029 to supply 
the forecasted demand since other resources have reached their potential of dispatching. 
 

 
Fig. 2. Annual electricity generation shares for the OPT scenario. 
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The last scenario applied to the LEAP model was the DCS_OPT which is based on 
optimizing the water consumption using dry cooling systems for all technologies. As can be 
seen in Fig. 3, unlike OPT scenario results, the shares of biogas and geothermal power plants 
decrease over the years due to their high WCF for dry cooling systems. Similar to the results 
of OPT scenario, the share of coal/lignite power plants start to increase after 2029.  

 

 
Fig. 3. Annual electricity generation share for the DCS_OPT scenario. 
 

 Using the estimated generation of each technology from LEAP model, the water 
consumption of each technology is calculated to determine the total water consumption 
between 2017 and 2035 as presented in Fig. 4. 

 

 
Fig. 4. Total water consumption over the study period based on four scenarios. 
 

As it can be seen clearly from this figure, BAU scenario results in the highest water 
consumption in all years throughout the estimation period. As the electricity demand in 2035 
is expected to be the double the amount in 2016, the total water demand is estimated to 
increase almost three folds by 2035 based on BAU scenario. Furthermore, the nuclear power 
plants will roughly increase the water consumption once they start to operate gradually 
between 2022 and 2028. Total water consumption reduces significantly when the technology 
shares are optimized based on WCF as done at OPT and DCS_OPT scenarios. The use of dry 
cooling systems for all technologies reduces the water consumption about 80%. Even the dry 
cooling systems result in high decreases in the water consumption, they have lower heat 
transfer efficiencies compared to wet cooling systems, due to the heat capacity difference of 
water and air. In addition, these systems have higher capital costs than those of the wet ones. 
The annual WI determined based on each scenario is presented in Table 4. As it can be seen 
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here, WI based on BAU scenario increases by 5% in 2035, whereas WI based OPT scenario 
decreases by 25%.  

 
Table 4. Water intensity, WI, (m3/GWh) based on four scenarios. 

 
Scenario 2016 2020 2025 2030 2035 

BAU 693 693 731 732 726 
OPT 693 539 414 460 525 

DCS_BAU 47 47 159 163 141 
DCS_OPT 47 41 142 150 132 

 
In a similar project conducted in California, US, the annual WI was determined for the 

projected electricity generation [18]. The authors estimated that the WI would decrease from 
1083 m3/GWh in 2010 to 965 m3/GWh in 2035. In another study conducted in Texas, US, 
the WI for the electricity generation in 2010 was quantified as 1287 m3/GWh [19]. The WI 
determined in these studies are relatively higher the one estimated in this study. This is due 
to high share of nuclear power plants in the generation mixture and the high usage of wet 
cooling systems.  

4 Conclusion 
In this study, power plant data are gathered from various resources to determine the water 
consumption of all current power plants. The data analysis showed that the most common 
cooling system in Turkish power plants is the wet cooling system, which consumes the 
highest amount of water among all other cooling systems. Total water consumption in 2016 
is determined as 187 million m3, and the WI for 2016 is calculated as 693 m3/GWh. To 
optimize the technology mixture between 2017 and 2035 based on four scenarios, LEAP 
simulation program was used. The first scenario is BAU where 2016 technology shares are 
assumed to stay constant. Based on BAU technology mixture, the total water consumption is 
expected to increase by almost three folds parallel to the estimated increase in demand. The 
scenario in which water consumption is optimized (OPT) resulted in about 25% reduction in 
water consumption in 2035. In the third and fourth scenarios where it was assumed dry 
cooling systems are used for all thermoelectric power plants, expect nuclear, the water 
consumption and WI were reduced by almost 80%. Even though, the dry cooling systems 
achieve high decrease in the water consumption, they have low efficiencies due to the heat 
capacity difference between water and air. Also, these systems have higher capital costs than 
those of the wet ones. So, the use of hybrid cooling systems can be recommended in which 
the system will use the wet component in the hot days and the dry component in the normal 
days to decrease the water consumption. 
 
References 

 

1. P. A. Torcellini, N. Long, J. Ron, Consumptive water use for US power production, 
NREL conference paper (2003)  

2. B. Lamya, G. Boardman, J. Bigger, J. Energ. Eng.-ASCE 138, 246–257 (2012) 
3. E. Mielke, L. D. Anadon, V. Narayanamurti, Water consumption of energy resource 

extraction, processing, and conversion, Belfer Center for Science and Int. Affairs (2010) 
4. M. J. Rutberg, Modeling water use at thermoelectric power plants, PhD diss., 

Massachusetts Institute of Technology (2012) 

7

E3S Web of Conferences 22, 00039 (2017)	 DOI: 10.1051/e3sconf/20172200039
ASEE17



5. T. Havey, California’s Coastal Power Plants: Alternative Cooling System Analysis, 
Golden Co., California (2008) 

6. J. Macknick, R. Newmark, G. Heath, K. Hallet, A review of operational water 
consumption and withdrawal factors for electricity generating technologies, NREL, U.S. 
(2011) 

7. L.L. Dale, N. Karali, D. Millstein, et al., Climatic Change 132, 223 (2015) 
8. Comparison of Alternate Cooling Technologies for California Power Plants, EPRI, Palo 

Alto, CA, and California Energy Commission, Sacramento, CA (2002) 

9. Turkey electricity energy production capacity projection of 5 years (2015–2019), 
[Online]. Available: www.teias.gov.tr  [Accessed December 2016] 

10. Enerji Atlasi, [Online]. Available: http://www.enerjiatlasi.com/. [Accessed December 
2016] 

11. Enka engineering for a better future, (2016). [Online]. Available: http://www.enka.com/ 
[Accessed 1 January 2017] 

12. Green Power Through Innovation, (2016). [Online]. Available: http://exergy-orc.com  
[Accessed 1 January 2017] 

13. A. Ashwood, D. Bharathan, Hybrid cooling systems for low-temperature geothermal 
power production, 1–62 (2011). Available at: http://digitalscholarship.unlv.edu 

14. Energy demands on water resources: Report to Congress on the interdependency of 
energy and water, U.S. Department of Energy, U.S. (2006) 

15. T. J. Feeley, T. J. Skone, G. J. Stiegel, A. McNemar, M. Nemeth, B. Schimmoller,  
J. T. Murphy, L. Manfredo, Energy 33, 1, (2008) 

16. User guide for version LEAP, (2015). [Online]. Available: www.energycommunity.org 
[Accessed 20 December 2016] 

17. Blue Book (Mavi kitap), MENR, (2015), Available: www.enerji.gov.tr [Accessed 20 
December 2016] 

18. H. Cooley, J. Fulton, P. H. Gleick, N. Ross, P. Luu, Water for energy, Report from 
Pacific Institute, USA (2011) 

19. B. Scanlon, R. C. Reed, I. Duncan, W. F. Mullican, M. Young, Int. J. Environ. Sci. 
Technol. 47, 19 (2013) 
 

8

E3S Web of Conferences 22, 00039 (2017)	 DOI: 10.1051/e3sconf/20172200039
ASEE17


