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a b s t r a c t

A k-matching in a hypergraph is a set of k edges such that no two of these edges inter-
sect. The anti-Ramsey number of a k-matching in a complete s-uniform hypergraph H on
n vertices, denoted by ar(n, s, k), is the smallest integer c such that in any coloring of the
edges of H with exactly c colors, there is a k-matching whose edges have distinct col-
ors. The Turán number, denoted by ex(n, s, k), is the the maximum number of edges in
an s-uniform hypergraph on n vertices with no k-matching. For k ≥ 3, we conjecture
that if n > sk, then ar(n, s, k) = ex(n, s, k − 1) + 2. Also, if n = sk, then ar(n, s, k) =
ex(n, s, k − 1) + 2 if k < cs
ex(n, s, k − 1) + s + 1 if k ≥ cs

, where cs is a constant dependent on s. We prove this con-
jecture for k = 2, k = 3, and sufficiently large n, aswell as provide upper and lower bounds.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A hypergraph H consists of a set V (H) of vertices and a family E(H) of nonempty subsets of V (H) called edges of H . If
each edge of H has exactly s vertices then H is s-uniform. A complete s-uniform hypergraph is a hypergraph whose edge
set is the set of all s-subsets of the vertex set. A matching is a set of edges in a (hyper)graph in which no two edges have
a common vertex. We call a matching with k edges a k-matching and a matching containing all vertices a perfect matching.
In an edge-coloring of a (hyper)graph H , a sub(hyper)graph F ⊆ H is rainbow if all edges of F have distinct colors. The
anti-Ramsey number of a graph G, denoted by ar(G, n), is the minimum number of colors needed to color the edges of Kn so
that, in any coloring, there exists a rainbow copy of G. The Turán number of a graph G, denoted by ex(n,G), is the maximum
number of edges in a graph on n vertices that does not contain G as a subgraph. The anti-Ramsey number of a k-matching,
denoted by ar(n, s, k), is the minimum number of colors needed to color the edges of a complete s-uniform hypergraph on n
vertices so that there exists a rainbow k-matching in any coloring. The Turán number of a k-matching, denoted by ex(n, s, k),
is the maximum number of edges in an s-uniform hypergraph on n vertices that contains no k-matching.

In 1973, Erdős, Simonovits, and Sós [6] showed that ar(Kp, n) = ex(n, Kp−1) + 2 for sufficiently large n. More recently,
Montellano-Ballesteros and Neumann-Lara [10] extended this result to all values of n and p with n > p ≥ 3. A history
of results and open problems on this topic was given by Fujita, Magnant, and Ozeki [8]. The Turán number ex(n, 2, k) was
determined by Erdős and Gallai [4] as

ex(n, 2, k) = max


2k − 1
2


,


k − 1
2


+ (k − 1)(n − k + 1)


for n ≥ 2k and k ≥ 1. Schiermeyer [11] proved that ar(n, 2, k) = ex(n, 2, k − 1) + 2 for k ≥ 2 and n ≥ 3k + 3. Later, Chen,
Li, and Tu [2] and independently Fujita, Kaneko, Schiermeyer, and Suzuki [7] showed that ar(n, 2, k) = ex(n, 2, k − 1) + 2
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for k ≥ 2 and n ≥ 2k + 1. The value

ar(n, 2, k) =


ex(n, 2, k − 1) + 2 if k < 7
ex(n, 2, k − 1) + 3 if k ≥ 7

was determined for n = 2k in [2] and by Haas and the second author [9], independently.
The same ideas implying a lower bound for the anti-Ramsey number of graphs given in [6] provide a lower bound for

ar(n, s, k).

Proposition 1. For all n, ar(n, s, k) ≥ ex(n, s, k − 1) + 2.

Proof. Let H be a complete s-uniform hypergraph on n vertices. Let G be a subhypergraph of H with ex(n, s, k − 1) edges
such that G does not contain a (k − 1)-matching. Color each edge of G with distinct colors and color all of the remaining
edges of H the same, using an additional color. If there is a rainbow k-matching in this coloring, then it uses k − 1 edges
from G which is a contradiction. Therefore, this coloring has no rainbow k-matching. �

For k-matchings the Turán number ex(n, s, k) is still not known for k ≥ 3 and s ≥ 3. Erdős [3] conjectured in 1965
the value of ex(n, s, k) as follows. Let g(n, s, k − 1) be the number of s-sets of {1, . . . , n} that intersect {1, . . . , k − 1}. By
definition, g(n, s, k − 1) =

 n
s


−


n−k+1

s


.

Conjecture 2 (Erdős [3]). For n ≥ sk, s ≥ 2, and k ≥ 2,

ex(n, s, k) = max


sk − 1
s


, g(n, s, k − 1)


. (1)

Erdős, Ko, and Rado [5] proved that ex(n, s, 2) =


n−1
s−1


= g(n, s, 1) for n ≥ 2s. This conjecture is true for s = 2, as

shown by Erdős and Gallai [4]. Erdős [3] proved that

ex(n, s, k) = g(n, s, k − 1) =

n
s


−


n − k + 1

s


(2)

for sufficiently large n. Later, Bollobás, Daykin, and Erdős [1] sharpened this result by showing that (2) holds for n >
2s3(k − 1).

In Section 2, we provide bounds on ar(n, s, k) and show that anti-Ramsey number and Turán number of a k-matching
differ at most by a constant. In Section 3, we determine the value of ar(n, s, k) for k ∈ {2, 3} and show that ar(n, s, k) =

ex(n, s, k − 1) + 2 for k ∈ {2, 3} and n > ks. The claim also holds for n = kswhen k = 3. We conjecture that this is true for
all k.

Conjecture 3. Let k ≥ 3. If n > sk, then ar(n, s, k) = ex(n, s, k − 1) + 2. Also, if n = sk, then

ar(n, s, k) =


ex(n, s, k − 1) + 2 if k < cs
ex(n, s, k − 1) + s + 1 if k ≥ cs

where cs is a constant dependent on s.

Finally, in Section 4, we give the exact value of ar(n, s, k) when n is sufficiently large.
We introduce some notation for hypergraphs used in the remaining sections. For a set X ,


X
s


denotes all s-subsets of

X . We call a hypergraph an intersecting family if every two edges intersect. For a vertex x in a hypergraph H , we call the
number of edges of H containing x the degree of xwritten degH (x). The maximum degree of a hypergraph H is denoted by
1(H).

2. General bounds on the anti-Ramsey number

The following constructions provide a lower bound for ar(n, s, k) in Corollary 6.

Construction 4. Let H be the complete s-uniform hypergraph with vertex set {v1, . . . , vn}, where n = sk. Let A = {v1, . . . ,

vs+1} and c =


n−s−1

s


+ s. Define a c-coloring h of E(H) as follows. For any edge E ∈ E , if v1 ∈ E, then let h(e) = min{i :

vi ∉ E}. If E ∩ A ≠ ∅ but v1 ∉ E, then let h(E) = min{i : vi ∈ E}. Assign distinct other colors to the remaining edges.

Assume there is a rainbow perfect matching M in this coloring. Since n = sk, at least two edges of M intersect A. Let E
be the edge of M that contains v1. Let j = min{i : vi ∉ V (E)} and let E ′ be the edge of M that contains vj. By the above
construction, E and E ′ both have color j.
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Construction 5. Let H be a complete s-uniform hypergraph on n ≥ sk vertices. Let S be a subset of V (H) with k − 2 vertices
and color the edges containing any vertex from S with distinct colors. Color all of the remaining edges the same with an additional
color. The number of colors used is

 n
s


−


n−k+2

s


+ 1.

This construction has no rainbow k-matching, since at least two edges among any k must lie completely outside S. Con-
structions 4 and 5 establish lower bounds for the anti-Ramsey number:

Corollary 6. If n ≥ sk, then ar(n, s, k) ≥

max
 n

s


−


n − k + 2

s


+ 2,


n − s − 1

s


+ s + 1


if n = sk, n

s


−


n − k + 2

s


+ 2 otherwise.

Theorem 7. If n ≥ sk + (s − 1)(k − 1), then ar(n, s, k) ≤ ex(n, s, k − 1) + k.
Proof. Let H be a complete s-uniform hypergraph on n vertices whose edges are colored with ex(n, s, k − 1) + k colors.
Since taking exactly one edge of each color gives a subhypergraph with ex(n, s, k − 1) + k edges, there exists a rainbow
(k− 1)-matching M. Let the colors of the edges in M be α1, . . . , αk−1. Let A = V (H) \ V (M). Note that every edge induced
by A has a color in {α1, . . . , αk−1}, otherwise, there is a rainbow k-matching containing the edges of M.

Remove all edges ofH that have colorαi for 1 ≤ i ≤ k−1 and letG be the remaining hypergraph (with colors preserved).
In this coloring, there are at least ex(n, s, k−1)+1 colors and therefore a rainbow (k−1)-matching exists; call it M′. Since
no edge of G is induced by A, |V (M′) ∩ A| ≤ (k − 1)(s − 1). Together with the assumed lower bound on n, this yields
|A \ V (M′)| = |V (H) \ (V (M ∪ M′))| ≥ n − s(k − 1) − (s − 1)(k − 1) ≥ s. Hence some edge induced by A intersects no
edge in M′ and completes a rainbow k-matching with M induced by A that does not intersect any edge in M′. The color of
e is αi for some i, 1 ≤ i ≤ k − 1 and there is a rainbow k-matching using the edges in M′ and e. �

3. Anti-Ramsey numbers for k-matchings, k ∈ {2, 3}

Theorem 8. If n ≥ 2s, then

ar(n, s, 2) =


1
2

n
s


+ 1 n = 2s

2 n > 2s.

Proof. Let H be a complete s-uniform hypergraph on n vertices. If n = 2s, then by coloring complementary edges with the
same color and using distinct colors for all such pairs, we can obtain a coloringwithout a rainbow 2-matching. IfH is colored
by at least 1

2

 n
s


+ 1 colors then, by the pigeonhole principle, one of the vertex-disjoint edge pairs has distinct colors.

Now, let n ≥ 2s+ 1 and consider a coloring of the edge set of H with 2 colors such that there is no rainbow 2-matching.
This requires disjoint edges to have the same color. Hence in the Kneser graph K(n, s), where the vertices are the edges of
H and two vertices are adjacent when the corresponding edges of H are disjoint, all edges in the same component must
have the same color. It is well known that the Kneser graph is connected when n ≥ 2s + 1, so only one color can be used
when avoiding a rainbow 2-matching. �

Theorem 9. If n ≥ 3s, then ar(n, s, 3) =


n−1
s−1


+ 2 = ex(n, s, 2) + 2.

Proof. LetH be a complete s-uniformhypergraph on n verticeswith edge set E . We consider a coloring of E using


n−1
s−1


+2

colors, such that there is no rainbow 3-matching. Fix a vertex v and let E(v) denote the set of edges that contain v. Choose
Q as a subset of E \ E(v) such that the edges of Q do not have any color in common with the edges of E(v) and each color
not used on E(v) is the color of exactly one edge in Q . This implies that |Q | ≥ 2, since |E(v)| =


n−1
s−1


.

Note that any pair of edges E1 and E2 in Q have nonempty intersection, otherwise there is a rainbow 3-matching
containing E1, E2, and any edge of E(v) that does not intersect E1 and E2. Let A, B ∈ Q and C,D ∈ E(v) We use (A, B) to
denote an unordered pair of edges A and B. We write (A, B) � (C,D) if

A ∩ D = ∅, B ∩ C = ∅, and A ∪ D = B ∪ C
or

A ∩ C = ∅, B ∩ D = ∅, and A ∪ C = B ∪ D.
(3)

An example of the configuration of A, B, C and D is shown in Fig. 1.
We define an auxiliary bipartite graph Gwith vertex set V (G) = X ∪ Y , where X =


Q
2


, Y =


E(v)

2


and the edge set of

G is defined as E(G) = {(A, B)(C,D) : (A, B)� (C,D), (A, B) ∈ X, (C,D) ∈ Y }. In the proof of Claim 10, we use the following
result of Erdős, Ko and Rado [5] which gives an upper bound on the size of an s-uniform intersecting family on n vertices.

ex(n, s, 2) =


n − 1
s − 1


, for n ≥ 2s. (4)
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Fig. 1. The edges A, B, C , D and E.

Claim 10. There is a matching in G whose vertex set contains all vertices in X =


Q
2


.

Recall that Q is an intersecting subfamily. The degree degG(A, B) is the number of vertices (C,D) in Y that satisfy the
relation in (3). Therefore, the number of neighbors of (A, B) are given by the number of choices for the set (C ∩ D) \ {v}. Let
ℓ = |A ∩ B|, where 1 ≤ ℓ ≤ s − 1. Since |C ∩ D| = ℓ, each vertex in X has the same degree given by

degG((A, B)) =


n − (2s − ℓ) − 1

ℓ − 1


. (5)

Now, by the same observations as above, the degree of a vertex (C,D) in Y can be bounded above. Let (A, B) and (A′, B′),
where (A′, B′) ≠ (A, B), be neighbors of (C,D). By definition of the relation �, the edges A, A′, B, and B′ are all distinct.
Since Q is an intersecting family, A ∩ B and A′

∩ B′ cannot be vertex-disjoint. Therefore the collection of A ∩ B’s that satisfy
(A, B)� (C,D) for a fixed vertex (C,D) in Y with |C ∩D| = ℓ is an ℓ-uniform intersecting family on the vertex set V \ (C ∪D)
which has n − (2s − ℓ) vertices. By using (4), we obtain an upper bound on the degree of (C,D) as

degG((C,D)) ≤


n − (2s − ℓ) − 1

ℓ − 1


. (6)

Let G′ be a connected component of G. A result of the definition of the edge set of G is that if (U1,U2), (V1, V2) ∈ V (G′)
and |U1 ∩ U2| = ℓ, then |V1 ∩ V2| = ℓ. Let T ⊆ (V (G′) ∩ X) and N(T ) ⊆ (V (G′) ∩ Y ) be the neighborhood of T . Since (5) and
(6) also hold for G′ we have

|T |


n − (2s − ℓ) − 1

ℓ − 1


=


(A,B)∈T

degG′((A, B))

≤


(C,D)∈N(T )

degG′((C,D))

≤ |N(T )|


n − (2s − ℓ) − 1

ℓ − 1


.

Therefore, |T | ≤ |N(T )| for any T ⊆ (V (G′)∩X) and by Hall’s Theorem, there is a matching containing each vertex in G′
∩X .

Applying this to each component of G completes the proof of the claim.

Claim 11. Let (A, B) ∈


Q
2


and (C,D) ∈


E(v)

2


with (A, B) � (C,D). Then the edges C and D have the same color.

Let S be the subset of V (H) that is vertex-disjoint from these four edges, thus |S| = n− 2s ≥ s. Let E be an edge induced
by S. Let A, B, C and D be related as in (3) such that without loss of generality {A,D, E} and {B, C, E} are matchings. If E has
the same color as A or B then {B, C, E} or {A,D, E}, respectively, must be a rainbow matching. Therefore, E must have the
same color as C and D, since there are no rainbow 3-matchings. Hence, C and D have the same color.

We define another auxiliary graph Gv with vertex set E(v) and edge set {CD : C,D ∈ E(v) and degG((C,D)) > 0}. Let
|Q | = q and p be the number of components of Gv . By Claim 11, each component of Gv corresponds to a subset of E(v)whose
members have the same color. Therefore, p ≥


n−1
s−1


+ 2 − q.

One can find an injective mapping f :


Q
2


→


E(v)

2


defined by using the adjacencies of vertices in a matching of G

given by Claim 10. Therefore there are at least
 q
2


edges in Gv . The maximum number of components of a graph with fixed

number of vertices and edges is attained in the case when all edges are in a single component with minimum number of
vertices and remaining components are isolated vertices. Thus, p ≤


n−1
s−1


− q + 1. This is a contradiction with the lower

bound of p given above. �
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4. Anti-Ramsey number for large n

By following the same ideas of the proof of (2) in [1] and [3], one can prove Theorem 12. For completeness, we provide
its proof here.

Theorem 12. For fixed s and k and n ≥ 2s3k, ar(n, s, k) = ex(n, s, k − 1) + 2.

Proof of Theorem 12. Let H be a complete s-uniform hypergraph on n vertices. The lower bound for ar(n, s, k) is provided
by Construction 5. To prove the upper bound, we proceed by induction on k. Theorem 9 deals with the base case when k = 3
and n ≥ 3s.

For the inductive case, color the edges of H with exactly c =
 n
s


−


n−k+2

s


+ 2 =

k−2
i=1


n−i
s−1


+ 2 colors. We show

that H has a rainbow k-matching. Let G be a subgraph of H with c edges such that each color appears on exactly one edge
of G. Let v be a vertex such that degG(v) = 1(G).

Note that there are at least c −


n−1
s−1


colors on the edges of the complete subhypergraph H \ {v} and the inductive

hypothesis implies that c −


n−1
s−1


= ar(n − 1, s, k − 1) and there is a rainbow (k − 1)-matching in H \ {v}. Call this

matching M and modify G to obtain a new hypergraph G′ such that the edge set of G′ consists of the edges of M and all
edges of G except the ones that have a color from M. By this definition, G and G′ have the same number of colors and each
color on H appears exactly once on G′. The only difference is that degG′(v) ≥ 1(G′) − (k − 1) and v may not be a vertex
with maximum degree in G′, but its degree is still high enough.

We analyze the two cases depending on the maximum degree in G′. If 1(G′) < c/((k − 1)s) then the number of edges
containing a vertex in M is less than c and there is an edge of G′ that is vertex-disjoint from M and we are done. Otherwise,
1(G′) ≥ c/((k−1)s). The number of edges ofG′ containing both v and a vertex ofM is at most (k−1)s


n−2
s−2


. For n ≥ 2s3k,

we have

degG′(v) ≥ 1(G′) − (k − 1) ≥
c

(k − 1)s
− (k − 1) =

 n
s


−


n−k+2

s


+ 2

(k − 1)s
− (k − 1) > (k − 1)s


n − 2
s − 2


,

where the last inequality will be proved as Claim 13. Therefore, there is an edge of G′ that contains v and does not intersect
any edge of M, which implies that there is a rainbow k-matching.

Claim 13. For n ≥ 2s3k,n
s


−


n − k + 2

s


+ 2 > (k − 1)2s


s +


n − 2
s − 2

−1


n − 2
s − 2


.

Below, we first present the observations that will be used later.
Note that for r ≤ m ≤ n,m

r


≥


m − r + 1
n − r + 1

r n
r


=


1 −

n − m
n − r + 1

r n
r


.

By using the fact that (1 − x)a ≥ 1 − ax for 0 ≤ x < 1, the relation above gives thatm
r


≥


1 −

r(n − m)

n − r + 1

n
r


. (7)

Observe thatn
s


−


n − k + 2

s


+ 2 =

k−2
i=1


n − i
s − 1


+ 2 > (k − 2)

n − k + 2
s − 1


n − k + 1

s − 2


.

By (7) and the inequality above, we obtainn
s


−


n − k + 2

s


+ 2 > (k − 2)

n − k + 2
s − 1


1 −

(s − 2)(k − 3)
n − s + 1


n − 2
s − 2


. (8)

Assume that our claim does not hold. Then, (8) implies that

(k − 1)2s


s +


n − 2
s − 2

−1


> (k − 2)
n − k + 2

s − 1


1 −

(s − 2)(k − 3)
n − s + 1


.

One can check that this is a contradiction for n ≥ 2s3k and we are done. �
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