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To detect visually salient elements of complex natural
scenes, computational bottom-up saliency models
commonly examine several feature channels such as
color and orientation in parallel. They compute a
separate feature map for each channel and then linearly
combine these maps to produce a master saliency map.
However, only a few studies have investigated how
different feature dimensions contribute to the overall
visual saliency. We address this integration issue and
propose to use covariance matrices of simple image
features (known as region covariance descriptors in the
computer vision community; Tuzel, Porikli, & Meer,
2006) as meta-features for saliency estimation. As low-
dimensional representations of image patches, region
covariances capture local image structures better than
standard linear filters, but more importantly, they
naturally provide nonlinear integration of different
features by modeling their correlations. We also show
that first-order statistics of features could be easily
incorporated to the proposed approach to improve the
performance. Our experimental evaluation on several
benchmark data sets demonstrate that the proposed
approach outperforms the state-of-art models on various
tasks including prediction of human eye fixations, salient
object detection, and image-retargeting.

Introduction

A natural scene typically contains many objects of
various structures at different scales. This complexity
poses a great challenge for our visual system since, with
its limited capacity, it has to analyze a vast amount of
visual information at any given time. To cope with this
information overload, the human visual system has
developed attentional mechanisms to select the most
relevant (salient) parts of a scene that stand out relative
to the other parts. What captures our attention depends

on factors relevant to bottom-up or top-down selection
processes, or a combination of those. While the
bottom-up visual attention is mainly driven by intrinsic
low-level properties of a scene, the top-down attention
involves high-level visual tasks such as searching for a
specific object.

Recent years have seen an increase in the number of
computational approaches to visual saliency estima-
tion. Starting from the seminal work by Itti, Koch, and
Niebur (1998) most of the proposed saliency models
consider a bottom-up strategy in which a saliency map
is extracted in a purely data-driven manner by
considering center-surround differences (e.g., Gao &
Vasconcelos, 2007; Harel, Koch, & Perona, 2007; Seo
& Milanfar, 2009). There are also some studies that
carry out such computations in the frequency domain
(Achanta, Hemami, Estrada, & Susstrunk, 2009; Hou
& Zhang, 2007) or make use of natural image statistics
(Bruce & Tsotsos, 2006; Zhang, Tong, Marks, Shan, &
Cottrell, 2008). Another important line of models
integrates low-level cues with some task-specific top-
down knowledge such as face and object detectors
(Cerf, Harel, Einhaeuser, & Koch, 2007; Goferman,
Zelnik-Manor, & Tal, 2010; Judd, Ehinger, Durand, &
Torralba, 2009), and global scene context (Torralba,
Oliva, Castelhano, & Henderson, 2006) to improve
their predictions. Lastly, some recent studies pose
saliency estimation as a supervised learning problem
(Judd et al., 2009; Liu, Jian Sun, & Shum, 2007; Zhao
& Koch, 2011, 2012).

These computational models of visual saliency not
only provide important insights into the underlying
mechanisms of the human visual system but also have
been shown to improve the performances of many
computer vision applications such as scene classifica-
tion (Siagian & Itti, 2007), object recognition (Gao,
Han, & Vasconcelos, 2009; Rutishauser, Walther,
Koch, & Perona, 2004), object tracking (Butko,
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Lingyun, Cottrell, & Movellan, 2008), video compres-
sion (Wang, Lu, & Bovik, 2003), and image retargeting
(Achanta & Susstrunk, 2009; Avidan & Shamir, 2007;
Cheng, Zhang, Mitra, Huang, & Hu, 2011; Goferman
et al., 2010; Wang, Tai, Sorkine, & Lee, 2008).

In most of the existing bottom-up models, we
observe the following basic structure: (a) extract some
basic visual features such as color and orientation, (b)
investigate feature channels in parallel and extract a
feature map for each dimension, and (c) integrate these
maps to produce a master saliency map. Here, the most
troublesome step is the last step, which is typically
carried out by taking the weighted average (linear
summation). In this regard, some recent saliency
approaches try to overcome the feature integration
problem by finding optimal values for the weights in
the linear summation of feature maps in a supervised
manner (Judd et al., 2009; Liu et al., 2007; Zhao &
Koch, 2011). More recently, Zhao and Koch (2012)
proposed combining feature maps in a nonlinear way
by using AdaBoost learning method.

However, it is important to note that a limited
number of studies have addressed how different feature
dimensions contribute to the overall saliency (Calla-
ghan, 1989, 1990; Eckstein, Thomas, Palmer, &
Shimozaki, 2000; Rosenholtz, 1999, 2001; Rosenholtz,
Nagy, & Bell, 2004). For instance, it has been argued
that for certain tasks some visual features may become
visually more salient than others. In detecting region
boundaries, Callaghan (1989, 1990) showed that the
human visual system favors color over shape and form.
In a related discussion, Eckstein et al. (2000) suggested
that the difficulty in searching for conjunctions (Treis-
man & Gelade, 1980) can be explained by examining
the target and the distractors in a high-dimensional
visual feature space and by looking into the feature
dimensions along which the distractor and the target
differ. Similarly, Rosenholtz (1999, 2001) and Rosen-
holtz et al. (2004) suggested that the covariance of the
distractors in a higher dimensional feature space may
provide an explanation for the difficulty of searching a
target in motion or in different color.

Proposed approach

In this study, we aimed to perform the last two steps
of the aforementioned general structure of bottom-up
visual saliency estimation in a single shot. For that
purpose, we proposed using covariance matrices of
simple image features extracted from local image
patches, known as region covariances (Tuzel, Porikli, &
Meer, 2006), as meta-features for saliency estimation.
These second-order statistical descriptors capture local
structure information in an effective manner by
encoding pairwise correlations among features, but

most notably, they provide a nonlinear solution to the
aforementioned feature integration step (step c). We
directly computed the saliency of a local image patch
by means of the distances between its covariance
descriptor and those of the surrounding patches.
Nonlinear integration of different features makes our
framework especially suitable for natural images
containing texture elements or repeating patterns.
Here, one reasonable concern is that it might fail in
explaining search for conjunctions since our model
considers the statistical relationships among different
visual features and does not take into account the
features in isolation. Another point that may be raised
against the covariance-based saliency estimation based
on covariances is that it does not take into account the
differences in the means which could also indicate
saliency. In this regard, we showed that first-order
statistics can be easily incorporated to our saliency
model to further improve the performance. We
demonstrated through extensive experiments that the
proposed approach achieves highly competitive results
compared to many state-of-the-art models especially in
predicting human eye fixations.

It is worth mentioning that incorporating higher-
order statistics into saliency estimation has been
previously investigated by a number of researchers. For
example, Rosenholtz (1999, 2001) suggested computing
the saliency of a region or a point as the Mahalanobis
distance between its feature representation and the
mean of the surround features by taking into account
the covariance of the surround features. In a similar
fashion, Torralba (2003) and Torralba et al. (2006)
gave another bottom-up saliency definition by model-
ing the distribution of local features with a mixture of
Gaussians or a multi-variate power-exponential distri-
bution. Our approach differed from these methods in
that we made use of covariance matrices of local
features to represent image regions and considered the
distance between their covariance matrices in visually
comparing them. In this respect, it can be said that the
proposed approach shares similarities with some
methods proposed for texture segmentation and
modelling (e.g., Bangalore & Ma, 1996; Portilla &
Simoncelli, 2000; Puzicha, Hofmann, & Buhmann,
1997; Rosenholtz, 2000; Voorhees & Poggio, 1988).
However, those works only consider variances of
features but not the covariances as in the proposed
model.

Previous work

Most of the previously proposed saliency models are
grounded in theories of preattentive vision such as the
Feature Integration Theory by Treisman and Gelade
(1980) or the Guided Search Model of Wolfe, Cave, and
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Franzel (1989) and Wolfe (1994). They mostly differ in
their computational properties.

The earliest computational approach to visual
saliency is the biologically motivated model of Itti et al.
(1998). It is basically an implementation of the
approach of Koch and Ullman (1985) and employs a
multi-scale center-surround mechanism that imitates
the workings of the retinal receptive fields. Center-
surround differences are calculated for a set of linear
features, and then the resulting maps are combined
together to estimate the master saliency map.

Harel et al. (2007) proposed a graph-based approach
in which several feature maps are first extracted at
multiple spatial scales, as in the model of Itti et al.
(1998), and then represented as fully connected graphs.
While the vertices of the graphs denote the grid
positions, the edges represent the relationships between
pairs of vertices, weighted in proportion to their
dissimilarity in the corresponding feature space and
their spatial distance. The resulting graphs are used to
define Markov chains in which their equilibrium
distribution is treated as in the activation and saliency
maps.

Hou and Zhang (2007) suggested a simple way to
perform saliency estimation in the frequency domain in
which the saliency of an input image is computed as the
inverse Fourier transform of the spectral residual of the
image, which is defined as the difference between the
log spectrum of the image and its smoothed version.

Torralba (2003) and Torralba et al. (2006) proposed
a Bayesian contextual guidance model for visual search
tasks which combines low-level salience and scene
context. In estimating the probability of a target at
each pixel location, the bottom-up saliency (which
does not depend on the target) is modeled as 1/[p(FjG]
where F denotes the local features and G denotes the
global features of the image representing the gist of the
scene.

The Saliency using natural statistics (SUN) model
from Zhang et al. (2008) is another Bayesian frame-
work that combines top-down and bottom-up infor-
mation to guide visual search tasks. Unlike the
approach by Torralba et al. (2006), the bottom-up
saliency is based on the self-information of visual
features. The authors implemented their approach with
two different sets of features, one based on difference of
Gaussians (DoG) filters and the other based on
independent component analysis (ICA) features extract-
ed from a training set of natural images.

Bruce and Tsotsos (2006, 2009) approached bottom-
up saliency estimation from an information-theoretic
perspective and modeled the problem based on the
principle of sampling information maximization of a
scene. Similar to the case in Zhang et al. (2008), their
study also employed high-level features derived via
ICA, but these features were learned from the input

image itself. It is important to note that these models
both consider a global definition of saliency in which
the salient parts are estimated by considering the global
rarity of the local visual features in the entire image.

Goferman et al. (2010) introduced a context-aware
saliency model that aims to detect the important parts
of the image representing the scene. While identifying
these salient regions, they investigated a variety of
factors including local color and contrast information,
frequently occurring global features, and some visual
organizational rules and high-level semantic informa-
tion such as probability maps of face detectors.

Seo and Milanfar (2009) presented a self-resemblance
measure based on nonparametric kernel density esti-
mation in which local steering kernels (LSKs) are
employed as features. LSKs are obtained by examining
pixel value differences based on estimated gradients,
and the saliency of a pixel is then measured as the
likelihood of saliency of a feature matrix given its
neighboring feature matrices. Our framework, to a
certain extent, resembles the approach of Seo and
Milanfar (2009) in the sense that both employ
nonlinear features. Both region covariances and LSKs
capture local image structures better than responses of
standard linear filters such as Gabor, DoG, or ICA
filters. Moreover, both approaches carry out feature
integration in a nonlinear way. In particular, Seo and
Milanfar (2009) used the matrix cosine similarity
(MCS) between two LSK features; whereas, we utilize
the geodesic distance between covariance descriptors.

Figure 1 shows a highly textured image, taken from
Bruce and Tsotsos, 2006, that contains birthday
candles of various orientation and color, randomly
distributed on a solid background. This example
demonstrates the importance of using region covari-
ances in saliency estimation. In the case of natural
images, humans perceive a textured region as a whole
and thus attend more to the texture discontinuities
(changes in the textures) instead of the textured region.
While our model accurately captured the white gap in
the image as the most salient part, most of the state-of-
the-art models produce high saliency scores on the
highly textured regions since the linear features that
they employ give strong responses in these areas. For
this specific example, incorporating mean into our
covariance-based model did not improve the predic-
tion, although its result was superior to those of most
of the other saliency models.

In the next section, Nonlinear feature integration
using region covariances, we present a detailed
description of the proposed framework. In the Exper-
imental results section, we perform a comprehensive
evaluation on some benchmark data sets. Finally, we
conclude the paper with a brief discussion and possible
directions for future work.
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Nonlinear feature integration using
region covariances

Our model employs a local definition of saliency in
which the saliency of a pixel is measured by how much
it differs from its surroundings. This is carried out on a
patch-by-patch basis in which each rectangular image
region (local neighborhood of a pixel) is compared
against its immediate context described by the nearby
regions. We represented each patch by its region
covariance descriptor (Tuzel et al., 2006), which
naturally provided a nonlinear integration of features
using second-order statistics. To illustrate the general
idea, consider the image given in Figure 2a. Perceptu-
ally, the clownfish swimming around a coral reef stands

outs as the most salient object in the cluttered

background and immediately grabs the viewer’s atten-

tion. The proposed model first decomposes the image

into non-overlapping regions and estimates their

covariances. Here, we employed some basic features,

namely color, orientation, and spatial information (see

the Implementation details section). For the regions

highlighted in Figure 2a, the corresponding covariance

matrices are shown in Figure 2b. They clearly

demonstrate that the regions with similar characteris-

tics have similar covariances; whereas, the visually

dissimilar ones have dissimilar descriptions. As pre-

sented in Figure 2c, if our model is used, the fish pops

out from the background. Compare this with the result

of the seminal model of Itti et al. (1998) in Figure 2d.

Figure 1. For a highly textured input image, most of the state-of-the-art saliency estimation algorithms respond strongly to the

textured regions. In contrast, the proposed region covariance-based model detects the white gap as the salient part and gives a

perceptually more meaningful result. This is mainly achieved by nonlinearly combining simple visual features through covariances. For

this specific example, incorporating mean does not further improve the prediction.

Figure 2. The proposed saliency model. The input image is first decomposed into non-overlapping regions, and then the saliency of each

region ismeasuredbyexamining its surrounding regions.The salient regions are those that are highlydissimilar to their neighboring regions

in terms of their covariance representations based on color, orientation, and spatial features. For the given input image, the covariance

distances between the region C to the other regions in consideration are calculated as q(C,A)¼ 6.09, q(C,B)¼ 7.33, q(C,D)¼ 3.37, and

q(C,E)¼7.27. In the saliencymap computed by the proposedmodel, the fish pops out from the complex background, cf. Itti’s saliencymap

(Itti, Koch, & Niebur, 1998).

Journal of Vision (2013) 13(4):11, 1–20 Erdem & Erdem 4

Downloaded from jov.arvojournals.org on 05/19/2020



In the Region covariances section, we provide the
technical details about the proposed model. First, we
review the region covariance descriptor and then give
the details of our saliency model. Finally, we provide
the implementation details.

Region covariances

Covariance of features was first proposed as a
compact region descriptor by Tuzel et al. (2006). Since
then, it has been effectively utilized in various high-level
computer vision problems such as texture discrimina-
tion (Tuzel et al., 2006), object detection (Tuzel et al.,
2006; Tuzel, Porikli, & Meer, 2008), and object tracking
(Porikli, Tuzel, & Meer, 2006). For the formal
definition, let I denote an image, and F be the feature
image extracted from I:

Fðx;yÞ ¼ UðI;x;yÞ ð1Þ
where U denotes the d-dimensional function of features
such as intensity, color, orientation, spatial attributes, etc.

Then, a region R inside F can be represented with a
d · d covariance matrix CR of the feature points:

CR ¼
1

n� 1

Xn
i¼1
ðfi � lÞðfi � lÞT ð2Þ

with {fi}i ¼ 1. . .n denoting the d-dimensional feature
points inside R, and l being the mean of these points.

Tuzel et al. (2006) also proposed a fast way of
computing covariance matrices of rectangular regions
by using the first and the second-order integral image
representations (Viola & Jones, 2001) with O(d2)
computational complexity.

Note that covariance matrices do not lie on
Euclidean space. Hence, to compute the distance
between two covariances C1 and C2, Tuzel et al. (2006)
suggested using the metric proposed by Föerstner and
Moonen (1999):

qðC1;C2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ln2kiðC1;C2Þ
s

ð3Þ

where {ki(C1,C2)}i ¼ 1. . .n and {xi} are the generalized
eigenvalues and the generalized eigenvectors of C1 and
C2, respectively, satisfying

kiC1xi � C2xi ¼ 0; i ¼ 1 . . . d: ð4Þ
A covariance matrix provides a natural way of
combining different visual features with its diagonal
elements representing the feature variances and its
nondiagonal elements representing the correlations
among the features. Unlike the common practice in the
existing computational saliency models that assume the
responses of linear filters are independent of one

another and combined linearly, incorporating second-
order image statistics within a single descriptor encodes
the local structure exceedingly well and provides
robustness and high discriminative power. It is worth
noting that Karklin and Lewicki (2009) speculated that
nonlinearity in complex cells in the primary visual
cortex (V1) can be explained by the higher-level visual
neurons, which encode statistical variations describing
local image regions through covariance matrices.
Although we based our decision solely on computa-
tional grounds, the former argument provides an
insight into the biological plausibility of using region
covariances in saliency estimation.

Incorporating first-order statistics

In distinguishing between two different distributions
of features, first-order statistics could also play an
important role. To remedy this issue, Hong, Chang,
Shan, Chen, and Gao (2009) proposed employing the
notion of so-called Sigma Points (Julier & Uhlmann,
1996) in which covariance matrices are transformed
directly on Euclidean vector space using the Cholesky
decomposition. The idea is based on the property that
every symmetric, positive definite matrices (covariance
matrices) has a unique factorization whose elements
can be used to construct a small set of points in
Euclidean space. Once this is achieved, it becomes
straightforward to incorporate the mean vector of the
features, thus resulting in an enriched representation
which encodes both first and second-order statistics.

Let C be a d · d covariance matrix, the corre-
sponding set of Sigma Points S¼ {si} can be computed
as:

si ¼ a
ffiffiffi
d
p

Li if 1 � i � d
�a

ffiffiffi
d
p

Li if dþ 1 � i � 2d

�
ð5Þ

where Li is the ith column of the lower triangular
matrix L obtained with the Cholesky decomposition
C¼LL

T. Using the set S given in Equation 5, a feature
vector can be obtained by simply concatenating its
elements. Moreover, first-order statistics can be easily
incorporated to this representation scheme by adding
the mean vector of the features l. We denote this
enriched feature vector as W (C):

WðCÞ ¼ ðl; s1; . . . sd; ; sdþ1; . . . ; s2dÞT ð6Þ
For all the experiments in this paper, we take a¼

ffiffiffi
2
p

.

Local saliency estimation

Given an input image I, our model reshapes the
image to a square form and then decomposes it into
non-overlapping regions of square blocks {Ri}, which
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are of size k · k pixels. The saliency of a block is
estimated by comparing it with its nearby context. If it
locally displays distinct characteristics, it is regarded as
salient. The region properties depend on the pixels
within the region, and thus it can be argued that the
region size k determines the scale at which the saliency
prediction is performed. As compared to similar models
that use local patch-based strategies (Borji & Itti, 2012;
Duan, Wu, Miao, Qing, & Fu, 2011; Goferman et al.,
2010; Seo & Milanfar, 2009), the main novelty of our
model comes from using covariance descriptors of the
regions to represent their visual characteristics.

In this study, we conducted experiments on two
different versions of our model which respectively
employed (a) covariance features only and (b) com-
bined covariance and mean features.

Model 1: Saliency using covariance features

Let Ri denote the region under consideration whose
immediate context is defined by the regions {Rj} within
a radius of r. The saliency of Ri is defined as the
weighted average of the dissimilarities between Ri to the
m most similar regions around it. More formally, the
saliency of region Ri is given by:

SðRiÞ ¼
1

m

Xm
j¼1

dðRi;RjÞ ð7Þ

where the m most similar regions to Ri is found
according to the dissimilarity measure d(Ri, Rj) defined
as:

dðRi;RjÞ ¼
qðCi;CjÞ

1þ jjxi � xjjj
ð8Þ

with Ci and Cj denoting the covariance matrices, and xi
and xj being the image coordinates of the center of the
regions Ri and Rj, respectively. In determining the
distinctiveness of a region, weighting covariance
distances by inverse spatial distance decreases the
influence of visually similar nearby regions and
somehow introduces a grouping-like effect (see Figure
2).

Note that the region size k specifies the resolution of
the saliency map. Hence, in order to get a map at the
resolution of the original image I, we resized the
estimated saliency maps back to the original size. We
refer to the interpolated map as Ŝk denoting the
saliency at scale k.

Model 2: Saliency using covariance and mean features

In our first model, we employed covariance features
to compute the saliency map of an image. Although
covariance matrices can effectively encode local
structure information by using the second-order
statistical relations among features, first-order statis-
tics (mean) can be also valuable in capturing saliency
of an image region with respect to its surroundings.
The importance of looking at the difference in the
means is apparent in Figure 3. It depicts a checker-
board board image that contains a rectangular region
at the center whose contrast is lower than the
surrounding region and so draws our attention. This
rectangular region receives a low saliency value from
our first model because the covariances are the same
for the center and the surrounding regions. In
contrast, since the means are different, an analysis
based on first-order statistics would make this region
pop out from its surroundings.

To eliminate the shortcoming of the proposed
Model 1 already mentioned, we incorporated the mean
information into our covariance-based model and came
up with a second model in which the saliency of region
Ri is given by

SðRiÞ ¼
1

m

Xm
j¼1

d0ðRi;RjÞ ð9Þ

where the m most similar regions to Ri is found
according to the dissimilarity measure d0(Ri, Rj), which
is defined as:

d0ðRi;RjÞ ¼
jjWðCiÞ �WðCjÞjj
1þ jjxi � xjjj

ð10Þ

with W(Ci) and W(Cj) denoting the feature vectors with
the incorporated first-order statistics (Equation 6).
Again, the estimated saliency maps at scale k could be
interpolated to obtain a map Ŝk, which is of the same
size as the input image.

Figure 3. A synthetic image that highlights a case in which

considering only covariance features could not provide an

accurate saliency prediction whereas looking difference in the

means could.
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Incorporating center bias

The experiments on human eye fixations demon-
strate that there is a tendency in humans to look
towards the image center, which is called the center
bias. This bias is mainly explained by several factors
including (a) the photographer bias (tendency of
photographers to place objects of interest in the center
of photographs), (b) the viewing strategy (tendency of
participants to focus on the center to obtain more
information), or (c) the motor bias (center being the
optimal location to initiate a visual search) (Judd et al.,
2009; Tatler, 2007; Tseng, Carmi, Cameron, Munoz, &
Itti, 2009; Zhang et al., 2008). However, only a limited
number of studies additionally consider the center bias
in their models (Harel et al., 2007; Judd et al., 2009;
Zhao & Koch, 2011). It has been shown that adding the
center bias to the saliency models improves the quality
of their predictions. Thus, we included a center bias
into our second model by defining the saliency of
region Ri as follows:

S0ðRiÞ ¼ 1� jjxi � xcjj
Z

� �
� SðRiÞ ð11Þ

where xc is the coordinates of the image center and Z is
a normalization factor equal to maxi 0�Ijjxi 0 � xcjj. This
additional weight reflects the proximity to the region Ri

to the image center and thus signifies the center bias.

Scale-space extension

The objects that can be treated as salient in an image
can and do appear over a wide range of scales. This
suggests that saliency detection should be carried out
simultaneously at all possible scales. For that purpose,
most multiscale saliency models extract multiple
saliency maps, each at a different scale, and then
employ a fusion strategy to combine these maps to
come up with one final saliency map. The single-scale
saliency models described in the previous section can be
easily extended to operate on multiple scales by
following a similar idea.

Let K¼ {k} denote the set of region sizes
representing the scales at which the saliency predictions

is carried out. The master saliency map is given by the
product of individual saliency maps extracted at
different scales, convolved with a Gaussian, as follows:

SðxÞ ¼ GrðxÞ*
Y
k�K

ŜkðxÞ ð12Þ

where Ŝk (x) denotes the saliency score of pixel x at
scale k, and r is the standard deviation of the Gaussian
filter.

The above definition considers a spatial coincidence
assumption that an image part should treated as salient
if it is salient at all scales. For a sample image, Figure 4
presents saliency maps extracted at three different
scales. As can be seen, as we moved to coarser scales,
the model tended to capture the location of the visually
most prominent region in the image. Figure 4e shows
the combined saliency map obtained with the suggested
multiscale approach using covariance features. In the
master map, the red bell pepper in the image stands out
among the surrounding green peppers.

Implementation details

In our implementation, we used very simple visual
features, namely color, orientation, and spatial infor-
mation. Based on these features, an image pixel is
represented with a seven-dimensional feature vector:

Fðx;yÞ

¼ Lðx;yÞ aðx;yÞ bðx;yÞ ]Iðx;yÞ
]x

�����
����� ]Iðx;yÞ

]y

�����
����� x y

" #T

ð13Þ
where L, a, and b denote the color of the pixel in
L*a*b* color space, j]I/]xj, j]I/]yj, are the edge
orientation information, and (x,y) denotes the pixel
location. Hence, the covariance descriptor of a region is
computed as a 7 · 7 matrix.

In our model, there are three parameters related to
the notion of scale: (a) the set of region sizes K, (b) the
neighborhood radius r, and (c) the smoothing param-

Figure 4. (a) Input image. (b–d) Predicted saliency maps obtained at different scales (from the finest to the coarsest). (e) Final saliency

map according to the spatial coincidence assumption described in the text.
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eter r. The number of most similar neighbors m is
another parameter that needs be decided. In the
experiments, we first rescaled the input image of w · h
pixels to 512· 512 pixels, and fixed the parameter set as
K¼ {8, 16, 32, 64, 128}, r¼ 3, r¼ 0.02*w, and m¼ 1/10
of the number of the surrounding regions defined by r.

The saliency computation for a single image took a
few seconds with a Matlab implementation (MATLAB,
Mathworks, Natick, MA) on a Apple Macbook with a
2.53 GHz Intel Core2 Duo processor and 4 GB RAM.
It should be noted that the run-time performance of the
model can be improved by including some MEX Cþþ
subroutines and/or parallelizing the code.

Experimental results

In this section, we demonstrate the effectiveness of
the proposed models with a series of experiments
involving (a) prediction of human eye fixations, (b)
salient object detection, (c) image retargeting (or
content-aware image resizing) (Rubinstein, Gutierrez,
Sorkine, & Shamir, 2010), and (d) some psychophysical
patterns. Results of these experiments are available in
high resolution at http://web.cs.hacettepe.edu.tr/
;erkut/projects/CovSal. We compared the proposed
approaches both qualitatively and quantitatively with
the state-of-the-art saliency detection methods, includ-
ing the model from Itti et al. (1998) (Itti), Graph-based
visual saliency (GBVS) (Harel et al., 2007), the model
from Torralba et al. (2006) (Torralba) (excluding the
task prior), Spectral residual (Hou & Zhang, 2007),
SUN (Zhang et al., 2008), Attention based on
information maximization (AIM) (Bruce & Tsotsos,
2009), Saliency detection by self-resemblance (Seo &
Milanfar, 2009), and Context aware based saliency
detection (Goferman et al., 2010). The source codes of
these models were, respectively, downloaded from
http://www.klab.caltech.edu/;harel/share/gbvs.php,
http://people.csail.mit.edu/tjudd/SaliencyBenchmark/
Code/torralbaSaliency.m, http://www.klab.caltech.
edu/;xhou/projects/spectralResidual/spectralresidual.
html, http://cseweb.ucsd.edu/;l6zhang/code/
imagesaliency.zip, http://www-sop.inria.fr/members/
Neil.Bruce/, http://users.soe.ucsc.edu/;milanfar/
research/rokaf/.html/SaliencyDetection.html, and
http://webee.technion.ac.il/labs/cgm/
Computer-Graphics-Multimedia/Software/Saliency/
Saliency.html, and the results of these models were
obtained by the default parameters provided by the
authors, which matched with the values reported in the
related papers. The only exceptions were the parame-
ters for the GBVS and Itti models. For the GBVS
model, the implementation we used employs DKL
color space (instead of the ‘‘color double-opponent’’

model used in the original paper) because it has been
reported to provide better results. Furthermore, for the
Itti model, the center scales c ¼ {2,3} and the center-
surround scale differences d � {2, 3} were employed
instead of c¼ {2,3,4} and d � {2, 3}.

Predicting human eye fixations

The most common way of evaluating the perfor-
mances of bottom-up saliency models is to measure
how well the areas identified as attractive in computed
saliency maps coincide with the actual human eye
fixations. We tested the proposed method on this task
using three publicly available data sets (Bruce &
Tsotsos, 2006; Judd et al., 2009; Judd, Durand, &
Torralba, 2012).

Data sets

The first data set was from Bruce and Tsotsos (2006),
referred to as the Toronto data set, contains 120 natural
color images of size 681 · 511, each depicting an
outdoor or an indoor urban scene. The eye movement
data were collected from 20 subjects who free-viewed
each image for 4 s. The participants were given no
particular instructions except to observe the images.

The second data set was introduced by Judd et al.
(2009), referred to as the MIT1003 data set, and it was
the largest of all, with a total of 1003 natural color
images (779 landscape images and 228 portrait images),
which were randomly crawled from Flickr creative
commons and LabelMe. The images in this data set are
mostly of 1024 · 768 pixels (the longest dimension was
1024 pixels and the other one ranged from 405 to 1024
pixels). The data set contains eye fixation data from 15
viewers who performed a 3-s-long free-viewing task on
each image.

The last data set was from Judd et al. (2012), referred
to as the MIT300 data set, and it had eye fixation data
collected from 39 subjects for a total of 300 natural
images (223 landscape images and 77 portrait images).
The dimensions of the images were similar to those in
the MIT1003 data set, i.e., while the longest dimension
of each image was 1024 pixels and the other dimension
varied from 457 to 1024 pixels, with mostly 768 pixels.
Similarly, the participants also free-viewed each image
for 3 s.

Evaluation scores

We used several complementary metrics for a
comprehensive quantitative analysis. These are (a) the
area under the receiver operator characteristics (ROC)
(Green & Swets, 1966) curve (AUC), (b) the Normal-
ized Scanpath Saliency (NSS) (Parkhurst, Law, &
Niebur, 2002; Peters, Iyer, Itti, & Koch, 2005), (c) the
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Earth Movers Distance (EMD) (Pele & Werman, 2009;
Rubner, Tomasi, & Guibas, 2000), and (d) the
similarity score suggested by Judd et al. (2012). In the
next subsection, we report the mean values of these
metrics averaged over all the images in the data sets.

The ROC score is the most commonly used metric in
the literature. In a ROC analysis, the saliency map is
thresholded and treated as a binary classifier on every
pixel in a given image such that those pixels with
saliency values greater than the applied threshold level
is classified as fixated; whereas, the rest are considered
as nonfixated (Tatler, Baddeley, & Gilchrist, 2005). The
fixation data from the subjects are used as ground
truth. Then, the consistency between a saliency model
and the set of human fixations is given by AUC,
obtained by varying the threshold level. An AUC of 1
indicates a perfect prediction, while the chance
performance is around an area of 0.5.

The NSS is defined as the average value of the
responses at the human fixation points in the predicted
saliency map that has been normalized to have zero
mean and unit standard deviation. While an NSS � 0
indicates chance level, an NSS � 1 indicates that the
responses at fixated points are significantly higher than
those at the nonfixated points in the saliency map.

The EMD is a measure of dissimilarity between two
probability distributions and is defined as the minimum
cost required to transform one distribution into the
other. An EMD of zero indicates that two distributions
are the same. A larger EMD score suggests that two
distributions are significantly different. In our analysis,
we used a fast implementation of the EMD provided by
Pele and Werman (2009).

The similarity score suggested by Judd et al. (2012) is
a measure of similarity between two saliency maps,
which is defined as S ¼

P
i,jmin(Pi,j, Qi,j) with (i, j)

denoting the pixel location and P and Q being the
saliency maps that have been normalized to haveP

i,jPi,j ¼
P

i,jQi,j ¼ 1. While a perfect match has a
similarity value of 1, comparing two completely
different saliency maps results in a similarity score of
zero.

A good saliency model should have an AUC value
close to 1, a large NSS score, a low EMD value, and a
similarity value close to 1. An analysis based on AUC
or NSS depends solely on the exact locations of
fixation, while the EMD and the similarity score in
Judd et al. (2012) compared maps in a more global
manner. In this respect, it can be argued that these
metrics reveal different characteristics of the saliency
models. Despite the widespread use of AUC score as a
performance measure for visual saliency, it suffers from
the drawback that it only depends on the ordering of
the fixations (Zhao & Koch, 2011). That is, as long as
the hit rates are high, the AUC is always high
regardless of the false alarm rate. Additionally, it does

not consider the spatial deviation of the computed
saliency map from the actual fixation density map.

Another important point in performance analysis is
taking into consideration the center bias. As pointed
out by Zhang et al. (2008), a saliency map formed alone
by a Gaussian blob centered in the middle of the image
also yields very good results in a ROC analysis. Instead
of trying to remove the center bias (such as using the
unshuffled version of AUC metric suggested by Zhang
et al., 2008), we decided to include a center bias into all
the models tested in this study. In the following
experiments, we follow (Judd et al., 2012) and linearly
combine the saliency map of each model with a center
map as follows:

newSMap ¼ w*centerSMapþ ð1� wÞSMap ð14Þ
where w � [0, 1] is the weight of the center map.

Performance

Figures 5 and 6 present results of the proposed
approach and the state-of-the-art saliency models on
some sample images from the Toronto and the
MIT1003 data sets, respectively. In these images,
human participants tended to primarily fixate on only
one salient area containing a single object surrounded
by a highly textured background. Our saliency models
gave perceptually more accurate results as compared
with other models. This was primarily achieved by
performing nonlinear integration of visual features via
region covariances, which caused nonsalient regions
(textured backgrounds) to be suppressed very effec-
tively. Most of the saliency models, which employ
linear integration of features, respond to the true
salient regions as well as these textured regions and
have high saliency scores at these regions of repeating
distractors.

We provide quantitative analysis of the saliency
models on the Toronto, MIT1003, and MIT300 data
sets in Tables 1 through 3. For each data set, we also
show the results of two baseline models referred to as
Chance and Center, which stand for the random and
the centered Gaussian models, respectively. Tables 1
and 2 present evaluation scores of the saliency models
on the Toronto and MIT1003 data sets, respectively
(the EMD metric is left out for the MIT1003 data set
due to time constraints). The proposed approach,
which uses covariances and means with implicit center
bias, outperformed the other saliency models in terms
of all evaluation metrics. For a fair comparison, we
also incorporated an explicit bias towards the center by
taking a linear combination of the predicted the
saliency map of each model with the center model
(denoted by ‘‘with CB’’ in the tables). As can be seen,
including a center bias to the models boosted the
performances of all saliency models (results were
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obtained with the center weights being optimized
separately for each model on each data set). The
performances of our models with implicit center bias
and the GBVS model did not change much because
they inherently had a center bias. Table 3 illustrates the
model performances on the MIT300 data set. Similarly,
the proposed approach (both versions) gave very
competitive results on this data set compared with the
state-of-the-art models. As another baseline, we also
report the scores of the SVM-based model from Judd et
al. (2009), the best performing model in Judd et al.
(2012), which learns optimal feature weights through a
training process. It should be noted that our results
were quite close even if we used very simple features,
without any learning.

Detecting salient objects

Salient object detection refers to the task of
identifying foreground objects that attract more
attention in a given image. This definition of saliency
is directly related to figure-ground grouping, and there
are some computer vision studies that tackle this
problem with a segmentation-type binary labeling
formulation (e.g., Cheng et al., 2011; Rahtu, Kannala,
Salo, & Heikkilä, 2010). Although the saliency models
analyzed in this study are not designed to capture
exact (salient) object boundaries, such binary maps
can be obtained by thresholding the predicted saliency
maps.

Figure 5. Comparison to the state-of-the-art methods. The top row shows three sample images from the Toronto data set with the

superimposed eye fixations from all subjects (drawn with yellow dots). Our saliency model is much less sensitive to background

texture as opposed to other models, and correctly predicts the fixations.
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Data set

We used recently published ImgSal data set (Li,
Levine, An, Xu, & He, 2012), which contains a total of
235 natural color images of size 480 · 640 pixels
collected from either Google or from other data sets
available on the web. The images in this data set were
divided into six categories based on difficulty levels for
saliency detection. These categories involve images with
large salient regions (50 images), intermediate salient
regions (80 images), small salient regions (60 images),
cluttered backgrounds (15 images), repeating distractors
(15 images), and large and small salient regions (15
images).

The ImgSal data set contains eye fixation records as
well as binary maps of the salient objects. Here we only

concentrated on region ground truth obtained from 19
subjects who were asked to sit in front of a computer
screen and to label the most salient objects in the
images presented to them. The value of a pixel in a
ground truth map was set to 1 if the majority of the
subjects agreed that it belonged to a salient region,
otherwise it was set to 0.

Evaluation scores

In Li et al. (2012), the AUC score and the maximal
value of the Dice Similarity Coefficient (DSC) curve
were used in quantitative evaluation. The predicted
saliency maps were thresholded, and the thresholded
binary maps were compared against the binary ground
truth images provided in the data set using these scores.

Figure 6. Comparison to the state-of-the-art methods. The top row shows three sample images from the MIT1003 data set with the

superimposed eye fixations from all subjects (drawn with yellow dots). Our saliency models again provide results better than most of

the state-of-the-art saliency models. The predictions of our approach with covariance features are specifically very close to the ground

truth.
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The DSC is a measure of set agreement defined by
DSC¼ 2TP/[(TPþ FP)þ (TP þ FN)] where TP is the
true positive, FP is the false positive, and FN is the false
negative counts. A DSC value of 1 indicates a perfect
agreement whereas a DSC value of 0 means no overlap,
so a good salient object model should give a DSC value
close to 1.

Performance

Detecting salient objects on the ImgSal data set poses
some great challenges such as variation in scale,
cluttered backgrounds, repeating distractors, etc. The

images contain one or more objects that are distin-
guishable from the background by their visual charac-
teristics but with different difficulty levels. In Figure 7,
we present some qualitative examples. The illustrated
object maps were obtained by setting the threshold as
the average intensity of the saliency map plus one
standard deviation. Our saliency model detected the
salient objects accurately under these difficult scenarios.

We provide quantitative analysis of our model and
the state-of-the-art saliency models on the ImgSal data
set in Table 4. The proposed models outperformed the
other saliency models in three out of six categories, and
it was the second best or third best model in other

AUC NSS EMD Similarity

Without CB With CB Without CB With CB Without CB With CB Without CB With CB

Itti et al. (1998) 0.771 0.825 1.137 1.264 2.906 2.002 0.397 0.521

Harel et al. (2007) 0.829 0.835 1.533 1.533 2.014 1.886 0.519 0.556

Torralba et al. (2006) 0.710 0.832 0.805 1.185 3.467 1.868 0.330 0.528

Hou & Zhang (2007) 0.736 0.835 0.964 1.271 3.791 1.959 0.360 0.550

Zhang et al. (2008) 0.718 0.832 0.884 1.194 3.954 1.968 0.347 0.541

Bruce & Tsotsos (2009) 0.728 0.835 0.896 1.165 3.127 1.809 0.351 0.535

Seo & Milanfar (2009) 0.766 0.845 1.100 1.320 3.222 1.759 0.415 0.579

Goferman et al. (2010) 0.784 0.841 1.272 1.370 3.520 1.819 0.431 0.574

Our approach with

Covariances only 0.767 0.834 1.184 1.342 3.142 1.931 0.408 0.546

Covariances þ means 0.765 0.834 1.198 1.396 3.398 1.896 0.402 0.548

Covariances þ center 0.840 0.840 1.753 1.753 1.901 1.901 0.561 0.561

Covariances þ means þ center 0.851 0.851 1.891 1.898 1.728 1.728 0.581 0.581

Center – 0.803 – 0.969 – 2.401 – 0.478

Chance 0.505 0.803 �0.001 0.969 5.159 2.339 0.187 0.479

Table 1. Performance comparisons of the saliencymodels on the Toronto data set. Chance and Center are the baselines, which respectively
stand for the random and the centered Gaussian models. CB denotes center bias. The best performing model is shown in bold type.

AUC NSS Similarity

Without CB With CB Without CB With CB Without CB With CB

Itti et al. (1998) 0.741 0.827 0.921 1.170 0.273 0.402

Harel et al. (2007) 0.791 0.829 1.150 1.182 0.319 0.415

Torralba et al. (2006) 0.700 0.832 0.771 1.156 0.244 0.412

Hou & Zhang (2007) 0.713 0.833 0.855 1.200 0.264 0.421

Zhang et al. (2008) 0.703 0.834 0.829 1.177 0.261 0.418

Bruce & Tsotsos (2009) 0.709 0.835 0.813 1.148 0.254 0.415

Seo & Milanfar (2009) 0.712 0.836 0.826 1.171 0.263 0.424

Goferman et al. (2010) 0.758 0.840 1.053 1.241 0.297 0.431

Our approach with

Covariances only 0.715 0.826 0.862 1.169 0.261 0.410

Covariances þ means 0.740 0.832 0.940 1.240 0.287 0.417

Covariances þ center 0.833 0.833 1.468 1.486 0.417 0.418

Covariances þ means þ center 0.843 0.843 1.488 1.543 0.428 0.432

Center – 0.810 – 1.004 – 0.379

Chance 0.500 0.810 �0.000 1.004 0.131 0.383

Table 2. Performance comparisons of the saliency models on the MIT1003 data set. The best performing model is shown in bold type.
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categories. Our models achieved the best performance
especially when the images contained small salient
regions, cluttered backgrounds, and repeating distrac-
tors (Categories 3–5) in which nonlinear integration of
visual features were required in order to respond to
discontinuity in textures. We suspect that the reason
why our models performed poorly on the images
involving both large and small salient objects (Category
6) was due to the spatial coincidence assumption that
was considered in our multiscale saliency definition.

Image retargeting by seam-carving

Image retargeting or content aware image resizing
has emerged as an interesting computer vision problem,
which deals with automatically resizing an image to

arbitrary aspect ratios while trying to preserve impor-
tant content and internal structure and to prevent
visual artifacts (Rubinstein et al., 2010). To achieve
these objectives, most retargeting methods assume that
an importance map is available that highlights the most
prominent objects or the structures in the image so that
unimportant regions can be discarded during the
resizing process. In this regard, image retargeting has
proved to be a good application area for saliency
estimation (Achanta & Susstrunk, 2009; Cheng et al.,
2011; Goferman et al., 2010; Wang et al., 2008).
However, the literature lacks a quantitative analysis of
the performance of saliency models on retargeting
tasks. To our knowledge, our analysis is the first
comprehensive study that compares different saliency
models according to objective measures. For that
purpose, we used the ReTargetMe benchmark data set

AUC EMD Similarity

Without CB With CB Without CB With CB Without CB With CB

Itti et al. (1998) 0.750 0.806 4.560 3.394 0.405 0.493

Harel et al. (2007) 0.801 0.813 3.574 3.315 0.472 0.501

Torralba et al. (2006) 0.684 0.806 4.715 3.036 0.343 0.488

Hou & Zhang (2007) 0.682 0.804 5.368 3.200 0.319 0.487

Zhang et al. (2008) 0.672 0.799 5.088 3.296 0.340 0.473

Bruce & Tsotsos (2009) 0.751 0.820 4.236 3.085 0.390 0.507

Goferman et al. (2010) 0.742 0.815 4.900 3.219 0.390 0.509

Our approach with

Covariances þ center 0.800 0.800 3.422 3.422 0.487 0.487

Covariances þ means þ center 0.806 0.811 3.109 3.109 0.502 0.503

Center – 0.783 – 3.719 – 0.451

Chance 0.503 0.783 6.352 3.506 0.327 0.482

Judd et al. (2009) 0.811 0.813 3.130 3.130 0.506 0.511

Table 3. Performance comparisons of the saliency models on the MIT300 data set. The best performing model is shown in bold type.

Figure 7. Sample salient object detection results in the ImgSal data set. Here, only covariance features are used in saliency estimation,

and the object maps are then obtained from the saliency maps by thresholding them according to the average saliency score plus one

standard deviation. As can be seen, the salient objects are captured quite well by the proposed approach.
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(Rubinstein et al., 2010), which also provides an online
user survey at http://people.csail.mit.edu/mrub/
retargetme.

Data set

The ReTargetMe data set contains 80 images with 92
different resizing scenarios such as reducing or in-
creasing the width or the height of an images by 25% or
50%. The images in this data set are categorized into
nine groups based on some visual attributes identified
by the authors as important to retargeting objectives.
These attributes are lines/clear edges (50 images), faces/
people (26 images), recurring texture (10 images),
evident foreground objects (39 images), geometric
structures (33 images), symmetry (16 images), textual
elements (five images), outdoor/nature (29 images), and
indoor (nine images). Note that an image can belong to
more than one set since it may contain different
attributes.

We based our analysis on a widely known image
retargeting approach called Seam Carving (Avidan &
Shamir, 2007) whose source code is available at http://
people.csail.mit.edu/mrub/code/seam_carving-1.0.zip.
This method identifies a number of the so-called seams
which are paths of least importance in an image, and
then removes or inserts them to automatically shrink or
enlarge the size of the given image. In particular, we
used predicted saliency maps in combination with the
forward energy criterion in (Avidan & Shamir, 2007) to
guide the image retargeting process.

Evaluation scores

In the literature, little work has been published to
quantitatively measure retargeting quality due to the

subjective nature of the problem definition. To close
this gap, Rubinstein et al. (2010) examined the degree
of agreements between the human judgments and
several computational image distance metrics through
an online user study involving a total of 210
participants at the time of publication. The authors
argued that the EMD and SIFTflow scores are the only
two objective metrics that were highly consistent with
human rankings. They better related to the deforma-
tions caused by the retargeting methods, resulting in a
more reliable comparison of the image content after
resizing.

The EMD is a global metric that measures the
distance between the color histograms of two images.
SIFTflow is an image registration algorithm that aims
at aligning a query image to its neighbors in a large
image set. The alignment is formulated as an energy
minimization in which the correspondences between
similar structures across the images are determined
through densely sampled SIFT features. The cost of the
estimated alignment gives a matching score between
two images. Comparing two images with visually
similar contents results in smaller EMD and SIFTflow
alignment scores.

Performance

In Figure 8, we present comparative results of three
of our models and the GBVS saliency model on two
sample images from the ReTargetMe data set. These
are the four best models according to overall rankings.
As the baseline method, we also include the result of the
original Seam Carving method by Avidan and Shamir
(2007), which uses only the edge information while
enlarging or shrinking the images. Particularly in these
examples, our model with covariance features and

Large salient

regions

Intermediate

salient regions

Small salient

regions

Cluttered

backgrounds

Repeating

distractors

Large and small

salient regions

AUC DSC AUC DSC AUC DSC AUC DSC AUC DSC AUC DSC

Itti et al. (1998) 0.897 0.610 0.897 0.473 0.937 0.401 0.824 0.335 0.891 0.439 0.936 0.639

Harel et al. (2007) 0.945 0.694 0.925 0.529 0.951 0.463 0.916 0.499 0.934 0.557 0.952 0.688

Torralba et al. (2006) 0.790 0.469 0.825 0.377 0.929 0.372 0.700 0.239 0.750 0.306 0.870 0.515

Hou & Zhang (2007) 0.833 0.524 0.861 0.448 0.939 0.411 0.769 0.308 0.809 0.369 0.918 0.584

Zhang et al. (2008) 0.760 0.461 0.813 0.391 0.895 0.366 0.676 0.270 0.755 0.325 0.850 0.504

Bruce & Tsotsos (2009) 0.798 0.480 0.825 0.383 0.914 0.357 0.759 0.288 0.788 0.350 0.855 0.494

Seo & Milanfar (2009) 0.842 0.563 0.896 0.474 0.948 0.430 0.776 0.284 0.878 0.451 0.916 0.611

Goferman et al. (2010) 0.905 0.636 0.950 0.610 0.970 0.553 0.919 0.509 0.914 0.581 0.947 0.723

Our approach with

Covariances only 0.920 0.666 0.928 0.548 0.957 0.470 0.933 0.554 0.947 0.664 0.946 0.645

Covariances þ means 0.866 0.614 0.924 0.584 0.972 0.586 0.818 0.425 0.948 0.635 0.938 0.728

Covariances þ center 0.919 0.681 0.909 0.517 0.919 0.329 0.905 0.500 0.961 0.654 0.893 0.574

Covariances þ means þ center 0.865 0.673 0.912 0.580 0.954 0.508 0.879 0.441 0.960 0.698 0.888 0.664

Table 4. Performance comparisons of the saliency models on the ImgSal data set. The best performing model is shown in bold type.
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implicit center bias preserved the structures of the
prominent objects quite well since these objects were
predicted more accurately in the related saliency maps.

Table 5 provides the quantitative analysis of the
models. In terms of the EMD scores, the proposed
model with covariance features and implicit center bias
outperformed the other saliency models and the
baseline Seam Carving method in eight out of nine
categories, and it was the second best model in the
remaining category. In terms of the SIFTflow score, the
best performing model was mainly the original Seam
Carving method, followed by our saliency models and
the GBVS model. Our models preserved the prominent
areas well and during resizing did not distort them
much.

Psychophysical patterns

We tested our saliency models on some psycho-
physical patterns that are commonly used to explore
the mechanisms underlying preattentive visual search
(Treisman & Gelade, 1980; Wolfe, 1994). However, we
should note that the main goal of this study was to
devise a novel saliency model that can accurately detect
eye fixations. We do not claim that the proposed
framework completely explains all of the psychophys-
ical phenomena but aim to shed some light on the
plausibility of our model on some pop-out examples.

Figure 9 shows the set of synthetic patterns
considered in the experiments. In each case, there is a
target object that has a unique (basic) feature
surrounded by an array of distracting objects, thus the
target will pop out effortlessly. These patterns include
color pop-out, orientation pop-out, orientation and color
pop-out, local pop-out, curvature pop-out, texture pop-
out, and conjunction search examples. A good saliency
model should correctly identify the target objects in
these images.

As shown in Figure 9, in general, the information-
theoretic models proposed in Bruce and Tsotsos (2009)
and Zhang et al. (2008) performed poorly as compared
to the approaches in Harel et al. (2007) and Itti et al.
(1998). This was mostly because SUN and AIM models
both employ global image information instead of local
surround data. The approach of Goferman et al. (2010)
overall performed well on the first six cases; however, it
could not distinguish the local pop-out phenomenon in
the seventh example. Our model, on the other hand,
successfully reproduced the pop-out phenomena in all
the patterns considered here, except possibly the last
one, which involved a conjunction search. In this
example, while human subjects can immediately notice
the small, rotated, and red 5’s, it takes more effort to
spot the 2 on the bottom right. As we considered
feature statistics in a combined manner (as opposed to
traditional way of treating them separately), our

Figure 8. Comparison of retargeting results. The leftmost column shows two sample images from the ReTargetMe dataset. The

remaining columns present retargeting results with the corresponding saliency maps. The proposed approach with covariance

features successfully preserves the regions corresponding to the prominent objects such the clownfish and the chimney of the house.
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approach was able to detect only the red 5 and failed to
spot the other targets.

Evidence from psychophysical studies suggests that
in some situations, there exist asymmetries in visual
search. A well-known example of this is the presence–
absence asymmetry. It refers to the observation that
while the existence of a certain feature in a target object
makes it pop-out easily among distractors lacking that
feature, the reverse, the absence of a feature of
distractors in a target might not lead to a clear pop-out.
Figure 10 shows a typical example in which our
approach successfully reproduced the asymmetric
behavior that detecting the plus symbol among the
minus symbols is much easier than the reverse
distribution.

Discussion and concluding remarks

In this study, we presented a novel bottom-up
saliency model that employs region covariances as
features. Our experimental evaluation showed that the
proposed approach is highly competitive with the state-
of-the-art algorithms on several tasks, including
prediction of human eye fixations, salient object
detection, and image retargeting. Our framework
differed from traditional bottom-up approaches in that
it carried out feature map extraction and feature
integration steps in a single shot. This was made
possible by the use of region covariances, which was the
key to the success of our framework. Modeling the
statistical dependencies among different features, re-
gion covariances efficiently encode local structure
information. More importantly, they provide a natural
mechanism to nonlinearly integrate different features.
This allowed our approach to produce especially
accurate predictions for natural images containing
texture elements or repeating patterns. We also showed
that first-order statistics can be incorporated into our
framework as well in a fairly straightforward way.

From the computational perspective, as we stated in
the Introduction section, our model and the self-
resemblance model by Seo and Milanfar (2009) can be
considered somewhat similar in the sense that both
models use high-level features (region covariances and
LSKs) that nonlinearly combine some basic-level linear
features. Seo and Milanfar (2009) computed the MCS
between two LSK features, which is equivalent to a
weighted sum of vector cosine similarities between each
pair of column vectors in the feature matrices, with the
weights indicating the relative importance of each
feature. As compared to LSKs, which are obtained by
the radiometric differences based on image gradients,
region covariances are much richer descriptors since
they allow encoding correlations among every pair of
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different feature channels. The experimental results
clearly demonstrate that our approach is significantly
better than that of Seo and Milanfar (2009).

In our implementation, we used very simple visual
features such as color and orientation, but it is possible
to incorporate more complex semantic features. For
example, one can use gist of the scene, faces,
pedestrians, or text (Cerf, Frady, & Koch, 2009; Judd
et al., 2009; Torralba et al., 2006) as such additional
features. It might be interesting to seek that direction to

incorporate task-oriented top-down influences into our
model such as looking for faces or people. Further-
more, we also plan to explore estimation of spatio-
temporal saliency in dynamic scenes as another future
work. A shortcoming of the proposed model is the
strong spatial coincidence assumption considered in the
integration of saliency maps extracted at different
scales. With this assumption, it might be hard to detect
multiple salient objects that appear at different scales.
Thus, it would be interesting to extend the proposed

Figure 10. Search asymmetry example. The plus symbol (target) is clearly captured in the saliency map for the first pattern, while the

minus symbol is not easily distinguishable among the plus symbols.

Figure 9. Example psychophysical patterns showing various types of pop-out stimuli and the saliency maps of different bottom-up

saliency models. For these examples, our saliency models produce meaningful predictions but fails to correctly predict easy and

difficult searches in the final conjunction search example.
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framework to work simultaneously across multiple
scales.

Keywords: visual attention, computational saliency
model, feature integration, region covariances
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