
Turk J Elec Eng & Comp Sci

(2018) 26: 631 – 643

c⃝ TÜBİTAK

doi:10.3906/elk-1702-77

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Consistency-based trust management in P2P networks

Yasin ŞAHİN, Ahmet Burak CAN∗

Department of Computer Engineering, Hacettepe University, Ankara, Turkey

Received: 07.02.2017 • Accepted/Published Online: 14.11.2017 • Final Version: 30.03.2018

Abstract: Detecting malicious peers is a challenging task in peer-to-peer networks due to their decentralized structure

and lack of central authority. Trust models can help identify malicious peers by maintaining information about peer

relations and interactions. Keeping information about trust relations helps to reduce risks when providing or using

services. This paper introduces two consistency concepts in trust management. Feedback consistency is used to evaluate

how consistent feedback is with respect to past feedbacks. On the other side, peer consistency measures consistency

of a peer’s past feedbacks. These metrics help to reduce malicious interactions and increase successful downloads.

Furthermore, the model offers better service quality for good peers by using consistency metrics. A file-sharing application

is implemented on a simulation environment. The proposed model can effectively reduce the malicious download rate,

even in 50% malicious environments, and increases successful download rates.

Key words: Peer-to-peer systems, trust models, peer consistency, feedback consistency

1. Introduction

With the rapid growth of the Internet community, server-based centralized solutions are having difficulties

satisfying the increasing demands of clients on network bandwidth and hardware capabilities. Peer-to-peer

(P2P) networks can provide scalable decentralized solutions by distributing network traffic and processing costs

to peers. CPU- or disc-sharing networks, content-sharing platforms, file-distribution platforms, and many other

systems are implemented as P2P systems to overcome problems of server-based solutions. However, malicious

peers may degrade the effectiveness of P2P systems. In addition to sharing services, peers can share experiences

about provided services to decrease activities of malicious peers. Thus, each peer could have the opportunity

to evaluate another peer by using other peers’ experiences, even without knowing about the evaluated peer.

A peer may collect feedbacks of others and combine them with its own experience to calculate trust- and

reputation-related metrics. Since some feedback providers might be malicious, the calculation of metrics can be

challenging. A trust model should consider such cases and provide robust metrics to make trusting decisions

about service providers.

We propose a consistency-based trust model to identify malicious peers by using feedback consistency and

peer consistency metrics. Feedback consistency evaluates how consistent a feedback about a peer is compared to

previous feedbacks. Thus, malicious feedbacks can be detected and their importance in trust calculation can be

decreased. Furthermore, when a peer’s malicious feedbacks are detected, its peer consistency value is decreased.

In other words, peer consistency metric measures how good a peer is in providing feedbacks. This metric is

used by service providers when accepting service requests. If a service requester has low peer consistency, its

∗Correspondence: abc@hacettepe.edu.tr

631

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

feedback quality is considered low and then a service provider would more likely reject its requests. Furthermore,

peers with larger peer consistency values obtain better quality of service. The proposed model was tested on

the Peersim [1] simulation environment and produced robust results, even in extremely malicious environments

with a 50% malicious peer ratio.

In the rest of the paper, Section 2 discusses the related research. Section 3 explains the computational

model of the proposed approach. Section 4 defines the experimental model. Section 5 presents experimental

results. Section 6 concludes the study and gives possible future work directions.

2. Related work

At the beginning of the 21st century, centralized server systems started to be replaced by distributed systems.

P2P systems appeared as an approach to solve scalability issues in centralized systems. Due to the decen-

tralized nature of P2P systems, trust management is an important part of these systems. Mathematical and

statistical approaches are frequently used to model trust management problems in P2P systems. According to

network type, P2P trust models are generally evaluated in two categories: distributed hash table (DHT)-based

approaches and unstructured network-based approaches.

In DHT-based approaches, global trust information about a peer is stored by an archiver peer, which

is selected by the DHT mechanism. Thus, the entire interaction history of a peer can be accessed from its

archiver via the DHT. Aberer et al.’s model [2] was the first study in the field, introducing the reputation-based

trust management concept and a DHT-based trust management algorithm. In this model, negative experiences

are shared on a P-grid structure. However, this approach ignores the difference between a new and an old

peer and makes the model vulnerable to whitewashing attacks. The Eigentrust model [3] calculates local and

global trust values iteratively based on Eigenvector calculation over a distributed and decentralized model.

The PeerTrust [4] model defined the concept of feedback credibility for the first time. PeerTrust has created

a strong belief in the evaluation of similarity. Through the concepts of transaction and community context

factor, modeling relationships can be customized according to semantics of transactions and community. Guo

et al. [5] keep similarity measurements in a vector and propose a method to compute the vector via time effect.

Liu et al. [6] propose an approach to detect malicious feedbacks and measure service quality with integrality,

authenticity, and credibility metrics. FCTrust [7] uses a trust model based on feedback credibility for evaluating

the trustworthiness of participants.

In trust models on unstructured networks, a peer maintains trust information about peers interacted with

previously or peers in the neighborhood. Peers flood trust queries to their neighbors to learn trust information

about a peer and neighbors forward queries to their neighbors and so on. However, the trust value computed

from the collected data does not reflect opinions of all peers generally. The SORT [8] model manages trust

relations with historical data and feedbacks of neighbors. In that study, service and recommendation contexts

are defined and a service is evaluated with satisfaction, weight, and fading effect parameters. Cornelli et al. [9]

proposed a model of reputation sharing, which is based on a distributed polling algorithm while maintaining

the requestor’s and provider’s anonymity. Selcuk et al. [10] focused on preventing malicious nodes and infected

content, as well as proposing a solution to safeguard the ownership and authentication of messages. Su et al. [11]

propose the ServiceTrust model to measure the quality of service. The changes in local trust values are measured

and credibility is imported from PeerTrust. Su et al. carried their work further with the ServiceTrust++ model

[12] and included decay factor, similarity, threshold, controlled randomness, and jump strategy to the model.

Beyond statistical approaches, some other methods are applied to trust management. Song et al. [13]

632

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

calculated the local trust value of peers and the recommendation information by using a fuzzy logic inference

model. Tian et al. [14] proposed an evidence-theory–based fuzzy trust model that combined advanced fuzzy rules

with D-S evidence theory. FRTrust [15] applied a fuzzy model to cluster nodes based on semantic similarities

between their resources. Guo et al. [16] classified fuzzy data over the maximum tree with fuzzy clustering

for large-scale P2P networks to improve performance. GenTrust [17] evaluates service and reputation contexts

separately and uses peer and interaction features as input for genetic programming computation to detect

malicious peers. Liu et al. [18] proposed a trust model based on machine learning and used real datasets from

eBay and Allegro. They grouped features as features of a node from itself, features from other nodes, and

features of a service provided from a node.

3. Trust model

In the proposed trust model, each peer provides some resources or services and stores trust information about

other peers. Peers and resources are assumed to have unique ids. A peer starts interactions with others by

requesting their services. In an interaction, a peer becomes a provider peer if it provides a service. Otherwise, it

is a receiver peer. Trust information stored by a peer is assumed to be efficiently accessed over a DHT structure.

A peer cannot delete or damage its interaction history or trust information since this information about the

peer is stored by another peer (archiver).

3.1. Archiver

An archiver of a peer stores all trust information about the peer. Archiver of peer x is denoted by Ax , which

stores the following trust information about x :

• Fp(x) :Feedbacks given about x as a service provider

• Fr(x) :Feedbacks given by x as a service receiver

• Consistency (PC(x)) and trust (T (x)) values for x

• Continuing interactions

Each feedback is stored as a tuple. Assuming fi(x, y) = (si(x, y), FCi(x, y)) is the tuple representing ith

feedback of x (service provider) given by y (service receiver), si(x, y)represents the satisfaction value of fi(x, y)

and FCi(x, y) represents the feedback consistency value offi (x, y). An interaction may complete successfully,

may be terminated by the provider without completing the service (might be due to going offline), or may be

attacked if the service provider behaves maliciously during interaction. According to these cases, the service

receiver assigns the satisfaction value as follows:

si(x, y) =

1, if the interaction is successful

0, if x terminates the interaction

−1, if x is malicious during the interaction

(1)

An archiver may misbehave by providing false trust information about the archived peer. In the proposed model,

it is assumed that each peer has multiple archivers. Thus, such attacks can be prevented by cross-validation of

results from different archivers.

633

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

3.2. Feedback consistency

When a service receiver finishes its interaction with the service provider, it sends a feedback to the archiver

of the service provider. The archiver calculates a feedback consistency value. Feedback consistency measures

how similar a feedback is with the past feedbacks about a peer. Most studies in the literature [11,16,19,20] use

vector-based comparisons to measure the similarity between two specific peers, while we aim to compare a single

feedback value with all past feedbacks given about a peer. Thus, the vector-based comparison is not appropriate

for our purpose. In other words, feedback consistency measures the similarity between a feedback and all past

feedbacks about the evaluated peer. To evaluate this metric, the number of feedbacks with the same feedback

values is considered a measure of feedback consistency. Assuming x provides a service to y and, as a result,

ith interaction of x happens with y , the archiver of x (which is Ax) calculates the feedback consistency as

follows:

FCi(x, y) =
[Fp(x) ∩ si(x, y)]

[Fp(x)]
, (2)

where [Fp(x)] represents the number of feedbacks in Fp(x) and [Fp(x) ∩ si(x, y)]represents the number of

feedbacks that have the same satisfaction values in Fp(x) with the satisfaction value si(x, y).

3.3. Peer consistency

Peer consistency measures the consistency of a peer in terms of giving true feedbacks. Considering past feedbacks

of a peer y as a service receiver, feedback consistency values of all previous feedbacks in Fr(y) can be considered

a measure of peer consistency. Thus, we calculate peer consistency for peer y as follows:

PC(y) =

∑
fi(∗,y)∈Fr(y)

FCi(∗,y)

[Fr(y)]
, (3)

where fi (∗, y) is the ith feedback given by y about a peer and FCi (∗, y)is its corresponding feedback

consistency value.

While feedback consistency measures a feedback’s similarity with the previous feedbacks about a peer,

peer consistency measures how good a peer is at providing consistent feedbacks.

3.4. Calculating trust value

The archiver of a peer calculates a trust value for the peer by evaluating the feedbacks given about the peer as

a service provider. When evaluating a feedback, feedback consistency and consistency of the feedback provider

are considered. The archiver of a peer performs a trust calculation after receiving a new feedback about the

peer. Assuming peer x provides its ith service to peer y and y sends its feedback fi(x, y) to Ax , the trust

value of x is calculated by Ax as follows:

Ti (x)=∝Ei (x,y)+ (1− ∝)Ti−1(x) (4)

Ei (x,y)=si (x,y)FCi(x, y)PC(y), (5)

where Ti(x) is the trust value of peer x after ith interaction, Ei (x, y) is evaluation of ith feedback about

peer x , and 0 <∝< 1 is a constant value to determine the effect of the last feedback on the trust value.

634

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

When calculating Ei (x, y), consistency of the feedback (FCi(x, y)) and consistency of the feedback provider

(i.e. consistency of the service receiver –PC(y)) are considered. In this way, a feedback has more effect on

the trust value if it is consistent with the previous feedbacks and its provider is consistent. To be able to

bootstrap the network and give peers a chance to start interactions, each peer x is assigned to an initial trust

value T0 (x) = 0.2 in our model. Furthermore, ∝= 0.2 to balance the effects of feedback history and the new

feedback. These values were selected after performing extensive experiments.

3.5. Starting an interaction

Figure 1a shows how an interaction is started in our model. As the first step of starting an interaction (i.e. file

download), the service receiver y queries the network to learn possible resource providers (Step 1). As a result

of this query, a list of service providers and their archivers are returned by the network. In this study, it is

assumed that all resource providers in the network can be learned with a single query. However, some network

infrastructures may return only a group of providers, which does not affect our calculations. Then the service

receiver y queries all archivers of service providers returned in Step 1. For ease of explanation, only the service

provider x and its archiver Ax are shown in Figure 1a (Step 2). Ax returns x ’s current trust value T (x). If

this value is larger than a threshold value, y decides to send a request to x asking how much bandwidth it can

allocate (Step 3). When selecting service providers, the trust threshold value is set to 0.8 at first. If there is

no service provider having a larger trust value than the threshold, or the request of x is rejected by all service

providers, the threshold value is decreased to 0.6, 0.4, and 0.2 until a service provider is found and accepts

providing the service to x. In this way, x increases its chance of finding a service provider. If the threshold

value reaches 0, the search is stopped and the service request is canceled. However, the search can be stopped

at a higher threshold value if more trustworthy interactions are desired.

Figure 1. Lifecycle of an interaction.

When y requests the resource, the service provider x queries y ’s consistency value (PC(y)) from

its archiver Ay (Step 4). If its consistency is higher than a threshold, x determines the amount of band-

width/resource to promise and returns its bandwidth promise to y (Step 5). After performing extensive eval-

uations, we set the threshold value for PC(y) as 0.5 in our model. If PC (y) > 0.5, x promises bandwidth as

635

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

a service provider to y . When calculating bandwidth promise, x considers its ongoing services and uses the

following equations:

pBW y=
PC (y)

tPCx
×tBW x (6)

tPCx=
∑
i∈Rx

PC (i), (7)

where tBW x is x ’s total bandwidth, pBW y is the promised bandwidth for y , and tPCx is the sum of

consistency values of receiver peers that are currently receiving service from x , which are denoted by Rx . In

other words, x shares its total bandwidth fairly among its service requesters based on their peer consistency

values.

For ease of explanation, y requests service from only x in Figure 1a. However, in a general application,

y may collect bandwidth promises from several service providers and select the peer who promises the greatest

bandwidth.

3.6. Finalizing an interaction

Figure 1b shows how an interaction is finalized. When an interaction is completed or terminated, the receiver

peer y sends its satisfaction value (si(x, y)) about the interaction to the archiver(s) of the provider peer x

(Step 1). Ax calculates and stores feedback consistency (FCi (x, y)) and trust (Ti (x))values (Step 3). Then

Ax sends FCi (x, y) value to the service receiver’s archiver Ay (Step 3). Finally, Ay recalculates and stores

y ’s peer consistency value, PC(y) (Step 4). If y provides misleading feedbacks, FCi (x, y) will be low, which

will decrease PC(y) as well.

4. Experiment

To evaluate the proposed model, we implemented a simulation model based on the Peersim environment [1].

Peersim has cycle-based and event-based simulation capabilities. In this study, we designed a cycle-based

environment to model a P2P file download application. At the start of each cycle, peers may start new

interactions (i.e. file download), finish a completed interaction, or advance a continuing interaction. Each

simulation configuration is run five times for 1000 cycles. The presented statistical results are the average of

five runs. As stated in Section 3.4, T0 (x) =∝= 0.2 in Eq (3). Due to space limitations, we do not present

the experimental results that led to selecting these values. The most important statistics collected during

experiments are given in the Table. Among these statistics, startedServiceCount is collected at the beginning

of services but other statistics are collected after finishing services.

Table. Statistics collected in the simulation experiments.

Statistic Description
startedServices Number of services started in a cycle.
succeededServices Number of good services finished in a cycle.
maliciousServices Number of malicious services finished in a cycle.
terminatedServices Number of services terminated in a cycle.
maliciousFeedbacks Number of malicious feedbacks for finished services in a cycle.

636

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

4.1. Attacker model

In the experiments, we studied four types of attackers. A malicious peer’s behavior is determined according

to collaborating strategy and attacking frequency. Attackers may behave as either individuals or collaborators,

according to collaboration strategy. When attacking frequency is considered, attackers may behave as either

näıve or hypocritical.

4.1.1. Individual malicious peers

Individual malicious peers attack individually and do not collaborate with others. There are two types of them:

• Näıve individual malicious peers: A näıve individual malicious peer always serves infected resources (files)

and gives misleading feedbacks.

• Hypocritical individual malicious peers: This type of attacker serves infected resources and gives mislead-

ing feedbacks to its victims with a given probability.

4.1.2. Collaborative malicious peers

Collaborative malicious peers behave as a collaboration group and work as a group to manipulate the system.

They always serve good files and true feedbacks to each other, but might serve infected files and give malicious

feedbacks to others. When submitting a malicious feedback, collaborators give a high recommendation if the

feedback is about a collaborator; otherwise they give a bad recommendation. Thus, they try to increase trust

values of each other in the system. We define two types of collaborators:

• Näıve collaborative malicious peers: A näıve collaborative malicious peer always provides infected files

and gives misleading feedbacks to others.

• Hypocritical collaborative malicious peers: This type of attacker performs the same attacks as the näıve

collaborative malicious peer but within an attack probability.

In the simulation experiments, the attack probability of hypocritical malicious peers is selected as

20%. This means that the hypocritical attacker serves infected resources and gives misleading feedbacks at

a probability of 0.2.

5. Results

In this section, we present the experimental results of the proposed model. In the experiments, malicious

download rates, malicious feedback rates, the bootstrapping phase of the network, and an extreme scenario

with a 50% malicious network are analyzed. Lastly, a comparison is done with the Eigentrust model [3]. In all

simulation experiments except the Eigentrust comparison, the peer population consists of 10,000 peers. In the

first three experiments, attackers occupy 20% of the network.

5.1. Malicious download rate

As a first experiment, we evaluate the effect of the proposed model on decreasing malicious download rate, which

is measured as the ratio of malicious downloads to all downloads. Each simulation is run by using the trust

model and then without any trust model, and then results are compared to understand how much the model

decreases the malicious download rate. The run without any trust evaluation is the base case to understand

how much attacks can affect system performance. Figure 2a shows the results of the simulation without a trust

637

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

evaluation. When a trust model is not used, the effect of näıve attackers increases continuously. As the näıve

attackers collect more files, they receive more download requests and their attack capability increases. After 800

cycles, more than half of the downloads are flagged as malicious in the näıve attacker simulation. In hypocritical

malicious peers, malicious download rate is stable at about 4%–5%, as in Figure 2a. Since they occupy 20% of

the whole peer population and their attack probability is 0.2, their effect in all downloads is limited to 4%–5%.

0%

10%

20%

30%

40%

50%

60%

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

M
D

R

CYC

Naive Ind Naive Col
Hypo Ind Hypo Col

0%

1%

2%

3%

4%

5%

6%

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0

0
0

M
D

R

CYC

Naive Ind Naive Col

Hypo Ind Hypo Col

a. Without trust model b. With trust model

Figure 2. Malicious download rate (MDR) versus cycles (CYC).

Figure 2b presents the results when the trust model is used. In the early stages of the experiment, the

trust model detects näıve malicious peers and malicious download rate decreases dramatically to 0.5% after

100 cycles. Considering cycles 900–1000, the successful download rate increases from 45% to 99.5% for näıve

attackers compared to the no-trust case. Since the attack rate is low in hypocritical attackers, the increase in

successful download rate is low for hypocritical attackers. The trust model increases the successful download

rate from 96% to 99.5%.

As a result of these experiments, we can conclude that the model identifies näıve and hypocritical attackers

after 50 cycles and decreases the malicious download rate.

5.2. Analyzing bootstrap of model

In order to observe effectiveness of the model in the bootstrapping phase of the network, we analyzed the first

50 cycles of the experiment. As seen in Figure 3a, at the beginning, malicious peers can affect the system easily

without the trust model. Malicious download rates ramp up in the first 5 cycles, and then increase slowly in

näıve attackers. Figure 3b shows the bootstrapping phase of the network with the trust model. Similar to

Figure 3a, the malicious download rate peaks in the first 5 cycles, but then the rate starts to fall with the help

of the trust model. After 20 cycles, the malicious download rate drops to below 0.2% and 2% for näıve and

hypocritical attackers, respectively. As more trust information is gathered by archivers, good and malicious

peers can be identified better in the later cycles. The model can easily exclude malicious peers, since all trust

information can be accessed by all peers using the DHT-based network. However, it makes the trust model

vulnerable to malicious feedbacks in the early cycles. After 5 cycles, the feedback consistency concept works

properly and malicious download rates drop.

638

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 5 10 15 20 25 30 35 40 45 50

M
D

R

CYC

Naive Ind Naive Col

Hypo Ind Hypo Col

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 5 10 15 20 25 30 35 40 45 50

M
D

R

CYC
Naive Ind Naive Col

Hypo Ind Hypo Col

a. Without trust model b. With trust model

Figure 3. Malicious download rate (MDR) versus cycles (CYC) in the bootstrapping phase.

5.3. Malicious feedback rate

To further analyze the trust model, we analyzed the feedback and peer consistency concepts and performed

experiments on these concepts. Figure 4a shows malicious feedback rates over time when consistency is off within

the trust model. Malicious feedback rates take variable values under 30% for näıve attackers. Hypocritical

attackers’ malicious feedback rate stays stable at around 5%.

Figure 4b shows malicious feedback rates when consistency is activated. Näıve attackers are detected and

isolated from the system in the early cycles (the lines of näıve individuals and collaborators overlap). Malicious

feedback rate of hypocritical attackers stays stable over time, but their rate is decreased by nearly 20%–40%

compared to Figure 4a. Although malicious feedbacks of hypocritical attackers are not eliminated substantially,

the successful download rate increases from 95.6% to 99.5%, as discussed in Section 5.1. Thus, their effect on

the whole system remains negligible.

0%

5%

10%

15%

20%

25%

30%

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0

0
0

M
F

R

CYC

Naive Ind Naive Col

Hypo Ind Hypo Col

0%

2%

4%

6%

8%

10%

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0
0

0

M
F

R

CYC

Naive Ind Naive Col

Hypo Ind Hypo Col

a. Consistency off b. Consistency on

Figure 4. Malicious feedback rate (MFR) versus cycles (CYC).

639

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

5.4. Extremely malicious environments

A trust model should robustly mitigate attacks, even if the ratio of malicious peers is excessive in the network.

In this experiment, 50% of the network is configured as malicious to analyze the trust model’s performance in an

extremely malicious environment. Figure 5a shows the malicious download rates observed in this experiment.

Hypocritical collaborative attackers can deceive the trust model and convince good peers to download and then

continue malicious uploads. Although the malicious download rate reaches 20% for näıve collaborators in the

first 50 cycles, it quickly falls below 1% after 200 cycles. Näıve and hypocritical individuals can be detected

earlier than collaborators.

0%

5%

10%

15%

20%

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0
0

0

M
D

R

CYC

Naive Ind Naive Col

Hypo Ind Hypo Col

0%

5%

10%

15%

20%

25%

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0
0

0

M
F

R

CYC

Naive Ind Naive Col

Hypo Ind Hypo Col

a. Malicious download b. Malicious feedback rate

Figure 5. Malicious download (MDR) and feedback (MFR) rates for the extreme scenario.

When we analyze the malicious feedback rates in Figure 5b, hypocritical attackers can disseminate more

malicious feedbacks than näıve attackers. Since hypocritical individuals occupy 50% of all the population and

their attack probability is 0.2%, we observe a steady 10% malicious feedback rate. Hypocritical collaborators

provide malicious feedbacks only when interacting with good peers (50% of all peers). Thus, their malicious

feedback rate remains around 5%. On the other hand, our trust model works well for näıve attackers and

effectively prevents their malicious feedbacks after 100 cycles.

5.5. Comparison with Eigentrust algorithm

In this section, we compare our model with the best-known trust management algorithm, Eigentrust [3]. We

implemented Eigentrust on the Peersim environment. As in our model, cycle-based simulation is performed to

make a fair comparison. File distribution and download attempt ratios are the same for both models. Malicious

peer counts, attack rates of hypocritical attackers, and collaborative activity of peers are also applied in the

same way for both models. We evaluate the models based on two different parameters: malicious download

rates and started download rates. Since reducing malicious feedbacks is not Eigentrust’s primary goal, malicious

feedback rates of the two models are not compared. In this section, all experiments are run with 1000 peers for

1000 cycles. In Eigentrust simulations, 30 pretrusted peers exist in the network.

All attacker models are applied in both models separately and their performance is observed. Our model

performs better than the Eigentrust algorithm in all scenarios. Figure 6 shows malicious download rates for

640

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

different attacker models. In all cases, malicious download rates decrease close to 0% with our model. The

Eigentrust algorithm also performs well, but it rarely falls under 2% malicious download rate. An important

feature of a trust model is that the model should not decrease interactions and peers should be able to start

interactions with reasonable trust level. Figure 7 shows the ratio of started interactions to all download attempts.

While our model allows interactions to start in 70%–90% of all interactions, Eigentrust allows less than 40%.

This shows that our model enables more interactions to start while keeping malicious download rates at a

low level. In näıve attackers, since 20% of the peers are malicious and our model generally does not allow

malicious peers to receive services, started download ratio remains around 80%. The same situation is observed

with hypocritical attackers proportional to their attack rate. With the hypocritical attackers, about 95% of

download intention is allowed in our model, while Eigentrust allows at most 40% of downloads. Thus, we can

conclude that our model provides security by blocking download attempts of malicious peers, not good peers.

6. Conclusion

A consistency-based trust model is proposed to identify malicious peers in P2P networks. The feedback and

peer consistency concepts of the trust model are robust methods for detecting malicious peers. The trust model

is tested in the Peersim simulation environment for a file simulation application. Networks of 10,000 peers are

0%

10%

20%

30%

40%

50%

0 200 400 600 800 1000

M
D

R

CYC

Model Eigen NaN

0%

10%

20%

30%

40%

50%

0 200 400 600 800 1000

M
D

R

CYC

Model Eigen NaN

0%

1%

2%

3%

4%

5%

0 200 400 600 800 1000

M
D

R

CYC

Model Eigen NaN

0%

1%

2%

3%

4%

5%

6%

7%

0 200 400 600 800 1000

M
D

R

CYC

Model Eigen NaN

a. Naive individual b. Naive collaborative

c. Hypocritical individual d. Hypocritical collaborative

Figure 6. Comparison of malicious download rates (MDR) without a trust model (NaN) and with both models

(Eigentrust and consistency-based trust models).

641

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

0%

20%

40%

60%

80%

100%

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0
0

0

S
ta

rt
ed

/A
tt

em
p

CYC

0%

20%

40%

60%

80%

100%

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0

0
0

S
ta

rt
ed

/A
tt

em
p

CYC

0%

20%

40%

60%

80%

100%

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0
0

0

S
ta

rt
ed

/A
tt

em
p
t

CYC

Model Eigen

0%

20%

40%

60%

80%

100%

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0
0

0

S
ta

rt
ed

/A
tt

em
p
t

CYC

Model Eigen

a. Naive individual b. Naive collaborative

c. Hypocritical individual d. Hypocritical collaborative

Model Model Eigen Eigen

Figure 7. Comparison of started download rates over all download attempts.

modeled for a better simulation of large networks. Individual and collaborative attackers are simulated in näıve

and hypocritical behaviors. Malicious download and feedback rates for four types of attackers are observed in

the experiments. The simulation experiments show that the trust model decreases malicious download rates in

all cases. Even with a 50% malicious network, the model mitigates the malicious download rate. In the worst

case, the malicious download rate stays around 10% for hypocritical collaborators in a 50% malicious network,

which is a promising result for such an extreme environment. Comparison with the Eigentrust algorithm [3]

showed that the model decreases malicious download rates more than Eigentrust does, while allowing more

downloads than Eigentrust does.

Although the malicious feedbacks of näıve attackers are decreased, hypocritical attackers can convince

good peers and continue malicious feedbacks. This shows us an improvement opportunity for future studies.

In future work, we plan to focus on hypocritical behavior in extremely malicious environments and mitigate

malicious feedbacks and downloads with the help of new metrics and concepts. As another research direction,

models based on machine learning can be studied to overcome these problems.

References

[1] Montresor A, Jelasity M. PeerSim: A scalable P2P simulator. In: IEEE International Conference on Peer-to-Peer

Computing; 9–11 September 2009; Seattle, WA, USA. New York, NY, USA: IEEE. pp. 99-100.

[2] Aberer K, Despotovic Z. Managing Trust in a Peer-2-Peer Information System. In: Proceedings of the Tenth

International Conference on Information and Knowledge Management (CIKM), 5–10 October 2001; Atlanta, GA,

USA. New York, NY, USA: ACM. pp. 310-317.

642

ŞAHİN and CAN/Turk J Elec Eng & Comp Sci

[3] Kamva SD, Schlosse MT, Molina H. G. The Eigentrust Algorithm for Reputation Management in P2P Networks.

In: 12th World Wide Web Conference; 20–24 May 2003; Budapest, Hungary. New York, NY, USA: ACM. pp.

640-651.

[4] Li X, Liu L. Peertrust: Supporting reputation-based trust for peer-to-peer electronic communities. IEEE T Knowl

Data En 2004; 16: 843-857.

[5] Guo L, Yang S, Wang J, Zhou J. Trust model based on similarity measure of vectors in P2P networks. In:

International Conference on Grid and Cooperative Computing; 30 November–3 December 2005; Beijing, China.

Berlin, Germany: Springer. pp. 836-847.

[6] Liu YM, Yang SM, Guo LT. A distributed trust-based reputation model in P2P System. In: Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing; 30 July–1 August 2007; Qingdao, China.

Basel, Switzerland: Springer International. pp. 294-299.

[7] Hu J, Wu Q, Zhou B. FCTrust: a robust and efficient feedback credibility-based distributed P2P trust model. In:

IEEE Young Computer Scientists; 18–21 November 2008; Hunan, China. New York, NY, USA: IEEE. pp. 1963-1968.

[8] Can AB, Bhargava B. Sort: A self-organizing trust model for peer-to-peer systems. IEEE T Depend Secure 2013;

10: 14-27.

[9] Cornelli F, Damiani E, di Vimercati SDC, Paraboschi S, Samarati P. Choosing Reputable Servents in a P2P

Network. In: 11th World Wide Web Conf. (WWW); 7–11 May 2002; Honolulu, HI, USA. New York, NY, USA:

ACM. pp. 376-386.

[10] Selcuk AA, Uzun E, Pari MR. A reputation-based trust management system for P2P networks. In: IEEE Cluster

Computing and the Grid; 19–22 April 2004; Chicago, IL, USA. New York, NY, USA: IEEE. pp. 251-258.

[11] Su Z, Liu L, Li M, Fan X, Zhou Y. ServiceTrust: trust management in service provision networks. In: 2013 IEEE

International Conference on Services Computing; 28 June–3 July 2013; Santa Clara, CA, USA. New York, NY,

USA: IEEE. pp. 272-279.

[12] Su Z, Liu L, Li M, Fan X, Zhou Y. Reliable and resilient trust management in distributed service provision networks.

ACM Trans Web 2015; 9: 1-37.

[13] Song S, Hwang K, Zhou R, Kwok YK. Trusted P2P transactions with fuzzy reputation aggregation. IEEE Internet

Comput 2005; 9: 24-34.

[14] Tian C, Yang B. A DS evidence theory based fuzzy trust model in file-sharing P2P networks. Peer Peer Netw Appl

2014; 7: 332-345.

[15] Saeed J, Shojafar M, Shariatmadari S, Ahrabi SS. FR trust: a fuzzy reputation–based model for trust management

in semantic P2P grids. Int J Grid Util Comp 2014; 6: 57-66.

[16] Guo L, Luo Y, Zhou Z, Ji M. A recommendation trust method based on fuzzy clustering in P2P networks. Journal

of Software 2013; 8: 357-360.

[17] Tahta UE, Sen S, Can AB. GenTrust: A genetic trust management model for peer-to-peer systems. Appl Soft

Comput 2015; 34: 693-704.

[18] Liu X, Tiredan G, Datta A. A generic trust framework for large-scale open systems using machine learning. Comput

Intell 2014; 30: 700-721.

[19] Das A, Islam MM. SecuredTrust: A dynamic trust computation model for secured communication in multiagent

systems. IEEE T Depend Secure; 2012; 9: 261-274.

[20] Xei Z, Geng Y, Bi J. STTM: Similarity transitivity chain based trust model in P2P environment. In: 2010 IEEE

International Conference on Communications; 23–27 May 2010; Cape Town, South Africa. New York, NY: IEEE.

pp. 1-5.

[21] Wang G, Musau F, Guo S, Abdullahi MB. Neighbor similarity trust against Sybil attack in P2P E-commerce. IEEE

T Parall Distr 2015; 26: 824-833.

[22] Zhou R, Hwang K, Cai M. GossipTrust for fast reputation aggregation in peer-to-peer networks. IEEE T Knowl

Data En 2008; 20: 1282-1295.

[23] Wen T, Zhong C. Research of subjective trust management model based on the fuzzy set theory. Journal of Software

2003; 8: 1401-1408.

643

	Introduction
	Related work
	Trust model
	Archiver
	Feedback consistency
	Peer consistency
	Calculating trust value
	Starting an interaction
	Finalizing an interaction

	Experiment
	Attacker model
	Individual malicious peers
	Collaborative malicious peers

	Results
	Malicious download rate
	Analyzing bootstrap of model
	Malicious feedback rate
	Extremely malicious environments
	Comparison with Eigentrust algorithm

	Conclusion

