Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[diaquamanganese(II)]-bis($\mu-4-$ fluorobenzoato- $\left.\kappa^{2} O: O^{\prime}\right)$]

Hacali Necefoğlu, ${ }^{\text {a }}$ Füreya Elif Özbek, ${ }^{\text {a }}$ Vijdan Öztürk, ${ }^{\text {a }}$ Barıs Tercan ${ }^{\mathrm{b}}$ and Tuncer Hökelek ${ }^{\mathrm{c} *}$

${ }^{\text {a }}$ Kafkas University, Department of Chemistry, 36100 Kars, Turkey, ${ }^{\text {b }}$ Karabük University, Department of Physics, 78050, Karabük, Turkey, and ${ }^{\text {c }}$ Hacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 6 June 2011; accepted 7 June 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.039 ; \omega R$ factor $=0.111$; data-to-parameter ratio $=15.4$.

In the crystal structure of the title complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FO}_{2}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Mn}^{\mathrm{II}}$ atom is located on an inversion centre. It is coordinated by two water molecules in the apical directions and four 4-fluorobenzoate (PFB) anions, bridging the symmetry related Mn atoms in the basal plane to form an infinite two-dimensional polymeric structure parallel to (100). The four O atoms of the PFB anions around the $\mathrm{Mn}^{\mathrm{II}}$ atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two O atoms of the water molecules. The dihedral angle between the carboxylate group and the adjacent benzene ring is $27.29(16)^{\circ}$. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds further connect the manganese-carboxylate units. $\pi-\pi$ contacts between the benzene rings [centroid-centroid distance $=3.6894$ (15) \AA] further stabilize the crystal structure.

Related literature

For literature on niacin, see: Krishnamachari (1974). For infomation on the nicotinic acid derivative N, N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (2008, 2009); Hökelek \& Necefoğlu (2007). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$V=699.66(5) \AA^{3}$
$M_{r}=369.18$	$Z=2$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=14.5065(6) \AA$	$\mu=1.00 \mathrm{~mm}^{-1}$
$b=6.6107(3) \AA$	$T=100 \mathrm{~K}$
$c=7.3708(3) \AA$	$0.34 \times 0.27 \times 0.24 \mathrm{~mm}$
$\beta=98.179(2)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.728, T_{\text {max }}=0.786$

11656 measured reflections 1758 independent reflections 1720 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.111 \quad$ independent and constrained
$S=1.28$ refinement
1758 reflections $\quad \Delta \rho_{\max }=1.24 \mathrm{e}_{\AA^{-3}}$
114 parameters $\quad \Delta \rho_{\min }=-0.45 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H32 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.79(4)$	$2.51(4)$	$3.039(3)$	$125(4)$
O3-H32 $\cdots 1^{\mathrm{i}}$	$0.79(4)$	$2.18(4)$	$2.935(3)$	$158(4)$
Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$				

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu

metal-organic compounds

University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2282).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-19.

Bigoli, F., Braibanti, A., Pellinghelli, M. A. \& Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.
Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Hökelek, T., Çaylak, N. \& Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. \& Necefoğlu, H. (2009). Acta Cryst. E65, m747-m748.
Hökelek, T. \& Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Poly[[diaquamanganese(II)]-bis(μ-4-fluorobenzoato- $\left.\left.\kappa^{2} O: O^{\prime}\right)\right]$

H. Necefoglu, F. E. Özbek, V. Öztürk, B. Tercan and T. Hökelek

Comment

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N, N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the title two-dimensional polymeric structure the $\mathrm{Mn}^{\mathrm{II}}$ atom is located on a centre of invesion, and surrounded by four 4-fluorobenzoate (PFB) anions and two water molecules (Fig. 1). The PFB anions bridge the symmetry related Mn atoms. The four O atoms [$\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 1 "$ and O 2 ", symmetry code: (") $-\mathrm{x},-\mathrm{y},-\mathrm{z}]$ in the equatorial plane around the Mn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the symmetry related O atoms of the coordinated water molecules (O 3 and O 3 ") in the axial positions (Fig. 1).

The near equalities of the $\mathrm{C} 1-\mathrm{O} 1[1.257(3) \AA]$ and $\mathrm{C} 1-\mathrm{O} 2[1.268(3) \AA]$ bonds in the carboxylate group indicate a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.263 (2), 1.279 (2), 1.263 (2) and 1.278 (2) \AA in $\left\{\left[\mathrm{Mn}^{2}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] .2\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{\mathrm{n}}$, (II) (Hökelek et al., 2009), 1.256 (6) and 1.245 (6) \AA in $\left[\mathrm{Mn}(\mathrm{DENA})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (III) (Hökelek et al., 2008) and 1.265 (6) and 1.275 (6) \AA in $\left[\mathrm{Mn}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] .2\left(\mathrm{H}_{2} \mathrm{O}\right)$, (IV) (Hökelek \& Necefoğlu, 2007).

The $\mathrm{Mn}-\mathrm{O}$ bond lengths are in the range of 2.1489 (17) - 2.1988 (19) \AA, and are close to standard values (Allen et al., 1987) with an average Mn-O bond length of 2.1735 (18) \AA. The Mn atom is displaced out of the least-square plane of the carboxylate group (O1/C1/O2) by -1.5976 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring $\mathrm{A}(\mathrm{C} 2-\mathrm{C} 7)$ is $27.29(16)^{\circ}$.

In the crystal structure, (Fig. 2), intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the manganese-carboxylate units, and may be effective in the stabilization of the structure. The $\pi \cdots \pi$ contacts between the benzene rings, $\mathrm{Cg} 1-\mathrm{Cg} 1^{\mathrm{i}}$ [symmetry code: (i) $\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}-1 / 2$, where Cg 1 is the centroid of the ring $\mathrm{A}(\mathrm{C} 2-\mathrm{C} 7)$] may further stabilize the structure, with a centroid-centroid distance of 3.6894 (15) \AA.

Experimental

The title compound was prepared by the reaction of $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.85 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and isonicotinamide $(1.22 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ with sodium 4-fluorobenzoate $(1.62 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving blue single crystals.

supplementary materials

Refinement

Atoms H31 and H32 (for $\mathrm{H}_{2} \mathrm{O}$) were located in a difference Fourier map and were freely refined. The C-bound H -atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.95 \AA$ for aromatic H -atoms, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (') $-\mathrm{x}, \mathrm{y}+1 / 2$, $1 / 2-z,(")-x,-y,-z,(") x, 1 / 2-y, 1 / 2+z]$. Hydrogen atoms, except those of the water molecules, have been omitted for clarity.

Fig. 2. A view along the a-axis of the crystal packing of the title compound [c-axis horizontal; b-axis vertical]. Hydrogen atoms, except those of the water molecules (violet balls), have been omitted for clarity.

$\operatorname{Poly}\left[\left[\right.\right.$ diaquamanganese(II)]-bis(μ-4-fluorobenzoato- $\left.\kappa^{2} O: O^{\prime}\right)$]

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]} & F(000)=374 \\
M_{r}=369.18 & D_{\mathrm{x}}=1.752 \mathrm{Mg} \mathrm{~m}^{-3} \\
\text { Monoclinic, } P 2_{1} / c & \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
\text { Hall symbol: }-\mathrm{P} 2 \mathrm{ybc} & \text { Cell parameters from } 9752 \text { reflections } \\
a=14.5065(6) \AA & \theta=2.8-28.5^{\circ} \\
b=6.6107(3) \AA & \mu=1.00 \mathrm{~mm}^{-1} \\
c=7.3708(3) \AA & T=100 \mathrm{~K} \\
\beta=98.179(2)^{\circ} & \text { Block, blue } \\
V=699.66(5) \AA^{3} & 0.34 \times 0.27 \times 0.24 \mathrm{~mm} \\
Z=2 &
\end{array}
$$

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans

1758 independent reflections
1720 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\max }=28.5^{\circ}, \theta_{\min }=2.8^{\circ}$

Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.728, T_{\max }=0.786$
11656 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.111$
$S=1.28$

1758 reflections
114 parameters
0 restraints
$h=-19 \rightarrow 19$
$k=-8 \rightarrow 7$
$l=-9 \rightarrow 9$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.031 P)^{2}+1.8232 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.45$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Mn1	0.5000	1.0000	0.5000	$0.00934(15)$
O1	$0.39762(12)$	$1.0833(3)$	$0.2723(2)$	$0.0133(4)$
O2	$0.58287(12)$	$0.9092(3)$	$0.2904(2)$	$0.0133(4)$
O3	$0.57162(13)$	$1.2939(3)$	$0.5150(3)$	$0.0146(4)$
H31	$0.575(3)$	$1.370(6)$	$0.604(6)$	$0.027(10)^{*}$
H32	$0.566(3)$	$1.361(6)$	$0.425(6)$	$0.031(10)^{*}$
F1	$0.99509(11)$	$0.7768(3)$	$0.6699(2)$	$0.0279(4)$
C1	$0.63126(16)$	$0.7488(4)$	$0.2983(3)$	$0.0099(4)$
C2	$0.72835(17)$	$0.7562(4)$	$0.3993(3)$	$0.0123(5)$
C3	$0.76860(18)$	$0.9415(4)$	$0.4534(4)$	$0.0169(5)$
H3	0.7340	1.0629	0.4285	0.020^{*}
C4	$0.85953(19)$	$0.9492(4)$	$0.5439(4)$	$0.0207(5)$
H4	0.8885	1.0748	0.5792	0.025^{*}

C5	$0.90623(17)$	$0.7696(5)$	$0.5807(4)$	$0.0184(5)$
C6	$0.86858(19)$	$0.5840(4)$	$0.5321(4)$	$0.0200(5)$
H6	0.9030	0.4633	0.5614	0.024^{*}
C7	$0.77816(18)$	$0.5780(4)$	$0.4383(4)$	$0.0168(5)$
H7	0.7505	0.4517	0.4008	0.020^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.0082(2)$	$0.0104(3)$	$0.0089(2)$	$0.00104(17)$	$-0.00066(17)$	$-0.00106(17)$
O1	$0.0120(8)$	$0.0117(8)$	$0.0150(8)$	$0.0013(6)$	$-0.0025(6)$	$0.0011(6)$
O2	$0.0145(8)$	$0.0125(8)$	$0.0131(8)$	$0.0030(7)$	$0.0025(6)$	$0.0003(6)$
O3	$0.0200(9)$	$0.0128(8)$	$0.0106(8)$	$-0.0009(7)$	$0.0010(7)$	$0.0003(7)$
F1	$0.0112(7)$	$0.0423(11)$	$0.0272(9)$	$-0.0031(7)$	$-0.0071(6)$	$-0.0018(8)$
C1	$0.0092(10)$	$0.0115(10)$	$0.0091(10)$	$-0.0004(8)$	$0.0024(8)$	$0.0008(8)$
C2	$0.0117(10)$	$0.0154(11)$	$0.0097(10)$	$-0.0011(8)$	$0.0010(8)$	$-0.0007(8)$
C3	$0.0163(12)$	$0.0152(12)$	$0.0185(12)$	$-0.0015(9)$	$-0.0002(9)$	$-0.0012(9)$
C4	$0.0176(12)$	$0.0210(13)$	$0.0226(13)$	$-0.0073(10)$	$-0.0003(10)$	$-0.0053(10)$
C5	$0.0083(10)$	$0.0314(15)$	$0.0147(11)$	$-0.0023(10)$	$-0.0014(9)$	$-0.0008(10)$
C6	$0.0153(12)$	$0.0219(13)$	$0.0216(13)$	$0.0046(10)$	$-0.0016(10)$	$0.0013(10)$
C7	$0.0154(11)$	$0.0153(12)$	$0.0184(12)$	$0.0002(9)$	$-0.0016(9)$	$-0.0010(9)$

Geometric parameters ($A,{ }^{\circ}$)

Mn1-O1	2.1489 (17)
$\mathrm{Mn} 1-\mathrm{Ol}{ }^{\text {i }}$	2.1489 (17)
$\mathrm{Mn} 1-\mathrm{O} 2$	2.1728 (17)
$\mathrm{Mn} 1-\mathrm{O} 2{ }^{\text {i }}$	2.1728 (17)
$\mathrm{Mn} 1-\mathrm{O} 3$	2.1988 (19)
$\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {i }}$	2.1988 (19)
$\mathrm{O}-\mathrm{Cl}^{\text {ii }}$	1.257 (3)
O2-C1	1.268 (3)
O3-H31	0.82 (4)
O3-H32	0.79 (4)
F1-C5	1.362 (3)
$\mathrm{C} 1-\mathrm{O} 1^{\text {iii }}$	1.257 (3)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}$	180.0
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2$	84.62 (7)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 2$	95.38 (7)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$	95.38 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$	84.62 (7)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3$	94.69 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 3$	85.31 (7)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {i }}$	85.31 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 3^{\text {i }}$	94.69 (7)
$\mathrm{O} 2-\mathrm{Mn1}-\mathrm{O} 2^{\mathrm{i}}$	180.0

sup-4

supplementary materials

$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 3$	88.55 (7)	C5-C4-H4	121.0
$\mathrm{O} 2 \mathrm{i}-\mathrm{Mn} 1-\mathrm{O} 3$	91.45 (7)	F1-C5-C4	118.1 (2)
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\mathrm{i}}$	91.45 (7)	F1-C5-C6	118.2 (2)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {i }}$	88.55 (7)	C6-C5-C4	123.7 (2)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {i }}$	180.00 (10)	C5-C6-C7	117.9 (2)
$\mathrm{C} 1{ }^{\text {iii }}-\mathrm{O} 1-\mathrm{Mn} 1$	134.33 (16)	C5-C6-H6	121.1
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Mn} 1$	123.85 (15)	C7-C6-H6	121.1
$\mathrm{Mn} 1-\mathrm{O} 3-\mathrm{H} 31$	124 (3)	C2-C7-C6	120.2 (2)
Mn1-O3-H32	118 (3)	C2-C7-H7	119.9
H31-O3-H32	108 (4)	C6-C7-H7	119.9
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{C} 1-\mathrm{O} 2$	124.0 (2)		
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{Cl}^{\text {ii }}$	-106.1 (2)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	169.1 (2)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1^{\mathrm{ii}}$	73.9 (2)	C1-C2-C3-C4	-178.6 (2)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{Cl}^{\text {ii }}$	-18.0 (2)	C7- $22-\mathrm{C} 3-\mathrm{C} 4$	1.1 (4)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1^{\text {ii }}$	162.0 (2)	C1-C2-C7-C6	179.9 (2)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{C} 1$	41.54 (19)	C3-C2-C7-C6	0.2 (4)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{Cl}$	126.69 (19)	C5-C4-C3-C2	-1.4 (4)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{C} 1$	-53.31 (19)	$\mathrm{F} 1-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	-179.8 (2)
$\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1^{\text {iii }}$	93.1 (3)	C6-C5-C4-C3	0.5 (4)
$\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	-86.2 (2)	C7-C6-C5-F1	-179.0 (2)
$\mathrm{O} 1^{\text {iii }}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	169.5 (2)	C7-C6-C5-C4	0.7 (4)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-10.3 (3)	C2-C7-C6-C5	-1.1 (4)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-11.2 (3)		

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x+1, y+1 / 2,-z+1 / 2$; (iii) $-x+1, y-1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 32 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.79(4)$	$2.51(4)$	$3.039(3)$	$125(4)$
$\mathrm{O} 3 — \mathrm{H} 32 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.79(4)$	$2.18(4)$	$2.935(3)$	$158(4)$

Symmetry codes: (ii) $-x+1, y+1 / 2,-z+1 / 2$.

Fig. 1

Fig. 2

