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Abstract

In this work we have considered the dynamic scaling relation of the magnetization in order to study the dynamic scaling behavior of 2- and
3-dimensional Ising models. We have used the literature values of the magnetic critical exponents to observe the dynamic finite-size scaling
behavior of the time evolution of the magnetization during early stages of the Monte Carlo simulation. In this way we have calculated the dynamic
critical exponent Z for 2- and 3-dimensional Ising Models by using the Swendsen—Wang cluster algorithm. We have also presented that this
method opens the possibility of calculating z and xq separately. Our results show good agreement with the literature values. Measurements done

on lattices with different sizes seem to give very good scaling.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Fortuin and Kasteleyn’s solution of the Potts model by us-
ing percolating clusters [1] has been an inspiration for the
Swendsen—Wang cluster algorithm [2]. This algorithm uses the
Hamiltonian of the Potts model in order to identify the clusters
of the spins with the same orientations. In defining a cluster,
starting from a seed spin, a new spin is added to the already
growing cluster with the probability P = 1 — ¢~#, where S
is the inverse temperature. After obtaining all possible clus-
ters on the lattice, clusters are flipped with equal probability.
Immediately after the work by Swendsen and Wang, Wolff pro-
posed an new algorithm [3], which is basically a modification to
the Swendsen—Wang algorithm. Despite the fact that the Wolff
algorithm is an alternative method of updating clusters, decor-
relation times have shown to be very different between Wolff
and Swendsen—Wang algorithms. Following these two cluster
update algorithms many alternative cluster update algorithms
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are introduced with decorrelation times always higher than that
of the Wolff algorithm. For 2-dimensional Ising model Heer-
man and Burkitt [4] suggested that the autocorrelation data are
consistent with a logarithmic divergence, but it is very difficult
to distinguish between the logarithm and a small power [5].

With the introduction of cluster algorithms, a great improve-
ment in the simulations of the magnetic spin systems has been
possible since it has been shown that the dynamic critical ex-
ponents of these algorithms are much less than that of local
algorithms such as Metropolis and Heat Bath. The efficiencies
(dynamic behavior and the dynamic critical exponents) have
been discussed by many authors by using various spin systems
at thermal equilibrium [2-8].

Recently we have studied the dynamic behavior of 2-, 3-,
and 4-dimensional Ising models by using the Wolff cluster al-
gorithm [9]. We based our work on the dynamic scaling which
exists in the early stages of the quenching process in the sys-
tem [10]. The efficiency of the Wolff algorithm is directly re-
lated to the size of the updated clusters, hence the efficiency
increases during the quenching process as the number of it-
erations increases. In our calculations, we have observed that
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our results are consistent with vanishing dynamic critical expo-
nent.

In this work we aimed to discuss the dynamic critical ex-
ponent of the Swendsen—Wang algorithm by using dynamic
finite-size scaling. This will give us an opportunity to compare
the efficiencies of cluster algorithms.

2. The method

In this work we have employed 2-, 3-, and 4-dimensional
Ising models which are described by the Hamiltonian

—BH=K)_S:5;. 1)
(ij)

Here 8 = 1/kT and K = J/kT, where k is the Boltzmann
constant, 7 is the temperature and J is the magnetic interaction
between the spins. In the Ising model the spin variables take the
values S; = £1.

To observe the critical behavior of the systems exhibiting
second-order phase transitions we use dynamic scaling which
exists in the early stages of the quenching process in the system.
For the kth moment of the magnetization of a system, dynamic
finite-size relation can be written as [10]

M®(t,e,mo, L)y = LEFBMMP (1172, e LYY /moL™), (2)

where L is the spatial size of the system, S and v are the
well-known critical exponents, ¢ is the simulation time and
€ = (T — T,)/ T, is the reduced temperature. In Eq. (2), z is the
dynamic critical exponent and x is an independent exponent
which is the anomalous dimension of the initial magnetiza-
tion my.

In order to discuss time evolution of the Swendsen—Wang al-
gorithm, we have selected wide range of thermodynamic quan-
tities. Eq. (2) implies that magnetization ({S)) and its higher
moments are good candidates for observing dynamic finite size
scaling behavior. For this reason we have considered (S), (§2)
and (S*) where, nth moment of magnetization is given by,

or-t(E))

1

Since the efficiency of cluster algorithms is related to the
average cluster size ((C)),

C Lgn ! C 4
( )_chi:Ld( D )
this quantity has also been considered in our calculations.

All of the above quantities have their own anomalous di-
mensions and using such quantities, in order to obtain dynamic
exponent, one may expect some ambiguities due to correc-
tion to scaling. Since our calculations are done in the early
stages of the simulations, the correlation length is expected to
be less than the lattice size; hence use of infinite lattice criti-
cal exponents in Eq. (2) can be sufficient to explain the criti-
cal behavior of the system. For this reason, critical exponents
are taken as the Onsager solution for the 2-dimensional Ising

model. For the 3-dimensional case, the critical exponent val-
ues are taken from the literature [11,12]. The 4-dimensional
case is the critical dimension for the Ising model, and above
4-dimension the critical exponents are the mean-field critical
exponents.

Following closely our previous calculations [9], two differ-
ent scaling functions are also used. The first such quantity is
Binder’s cumulant [13-15]. Binder’s cumulant is widely used
in order to obtain the critical parameters as well as to deter-
mine the type of the phase transition. The second quantity is
the scaling function (F') based on the surface renormalization.
This function is studied in detail for the Ising model [16-18]
and g-state Potts model [19-21]. We propose that the dynamic
finite size scaling relation also holds for the scaling functions
and the scaling relation can be written similarly to the moments
of the magnetization,

O(t,e,mo, L) = O (t/7,eL'" moL™). )

Our aim is to study dynamic finite size scaling behavior of
the scaling functions by using Eq. (5).

Binder’s cumulant involves the ratio of the moments of the
magnetization or energy. In this work we have used Binder’s
cumulant (B3 (?)) for n =2 by using the relation

2
Ba(ry= SO ©)
(IS1)=(0)

In order to calculate surface renormalization function F, one
considers the direction of the majority of spins of two parallel
surfaces which are L/2 distance away from each other [18].
Similar to the calculations of Binder’s cumulant, iteration-
dependent calculation of F requires the configuration averages
which are obtained for each iteration yielding a Monte Carlo
time-dependent expression,

F(t) = (sign[S:1sign[ ;4 1 21)(0). @)

F(t) can be used in calculating the dynamic finite size scal-
ing relation given in Eq. (5).

3. Results and discussion

We have studied 2-, 3-, and 4-dimensional Ising Models
evolving in time by using the Swendsen—Wang algorithm. Fol-
lowing our previous work [9], we have prepared lattices with
vanishing magnetization and total random initial configurations
are quenched at the corresponding infinite lattice critical tem-
perature. We have used the lattices L = 256, 384, 512, 640 and
L =32,48,64, 80, L =16, 20, 24 for 2-, 3-, and 4-dimensional
Ising models, respectively. Twenty bins of two thousand runs
have been performed for 2-, 3-, and 4-dimensional models. Er-
rors are calculated from the average values for each iteration
obtained in different bins.

In Fig. 1 we have presented the magnetization data ({S)(¢))
before and after the dynamic finite size scaling for 2-, 3-, and
4-dimensional Ising models for the lattice sizes considered.
Fig. 1 (a), (c) and (e) shows the time evolution of (S)(#) dur-
ing the relaxation of the system until a plateau is reached for 2-,
3-, and 4-dimensional Ising models, respectively. It is seen from
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Fig. 1. (a) Magnetization data (S)(¢) for the 2-dimensional Ising Model for linear lattice sizes L = 256, 384, 512, 640 as a function of simulation time ¢, (b) scaling
of (S)(r) data given in (a). (c) Simulation data for (S)(¢) as a function of simulation time ¢ for the 3-dimensional Ising model for linear lattice sizes L = 32, 48, 64,
80, (d) scaling of (S)(z) data given in (c). (e) Simulation data for (S)(¢) as a function of simulation time ¢ for the 4-dimensional Ising model for linear lattice sizes

L =16, 20, 24, (f) scaling of (S)(z) data given in (e).

these figures that time to reach the plateau is proportional to the
linear size (L) of the system. As it is seen from Eq. (2), in the
dynamic finite size scaling, (S)(¢) scales with a factor LY# =
and ¢ scales as #/L*. Fig. 1 (b), (d) and (f) shows scaling of
the time-dependent magnetization. For scaling of the magneti-
zation, literature values of infinite lattice critical exponents are
used. Yy istaken as Yy = % (Onsager solution), Yy = 2.4808
[11,12], Yy = 3 (mean-field solution) for the 2-, 3-, and 4-
dimensional models, respectively.

In Fig. 2 scaling of Binder’s cumulant (B> (¢)) has been pre-
sented. Fig. 2 (a), (c) and (e) shows the time evolution of B;(¢)
during the relaxation of the system for 2-, 3-, and 4-dimensional
Ising models, respectively. Fig. 2 (b), (d) and (f) shows scaling
of By ().

In Fig. 3 we have presented the surface renormalization
function data (F(¢)) before and after the dynamic finite size
scaling for 2-, 3-, and 4-dimensional Ising models for the lattice
sizes considered. Fig. 3 (a), (c) and (e) shows the time evolu-
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Fig. 2. (a) Binder cumulant data (B, (7)) for the 2-dimensional Ising model for linear lattice sizes L = 256, 384, 512, 640 as a function of simulation time ¢,
(b) scaling of B, (¢) data given in (a). (c) Simulation data for B () as a function of simulation time ¢ for the 3-dimensional Ising model for linear lattice sizes
L =32, 48, 64, 80, (d) scaling of B, (t) data given in (c). (¢) Simulation data for B, (¢) as a function of simulation time ¢ for the 4-dimensional Ising model for

linear lattice sizes L = 16, 20, 24, (f) scaling of B, (¢) data given in (e).

tion of F(¢) during the relaxation of the system until a plateau
is reached for 2-, 3-, and 4-dimensional Ising models, respec-
tively. It is seen from these figures that time to reach the plateau
is proportional to the linear size (L) of the system. Fig. 3 (b),
(d) and (f) shows scaling of F(t).

In all these figures scaling is very good for functions S(z),
B>(t) and F (). The errors in the values of z are obtained
from the largest fluctuations in the simulation data for B, ()

and F(¢). The values of the dynamic critical exponent z ob-
tained for 2-, 3-, and 4-dimensional Ising models are given in
Table 1.

Coddington and Baillie introduced a conjecture for the dy-
namic critical exponent for both Swendsen—Wang and Wolff
cluster algorithms. The conjecture suggests that for both
Swendsen—Wang and Wolff cluster algorithms, dynamic evo-
lution is governed by the dynamic critical exponents, which are
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Fig. 3. (a) Simulation data for the renormalization function (F(¢)) as a function of simulation time ¢ for the 2-dimensional Ising model for linear lattice sizes
L =256, 384, 512, 640, (b) scaling of F(¢) data given in (a). (c) Simulation data for F(¢) as a function of simulation time ¢ for the 3-dimensional Ising model for
linear lattice sizes L = 32, 48, 64, 80, (d) scaling of F(¢) data given in (c). (e) Simulation data for F(¢) as a function of simulation time ¢ for the 4-dimensional
Ising model for linear lattice sizes L = 16, 20, 24, (f) scaling of F(¢) data given in (e).

Table 1
The values of calculated dynamic critical exponents (z) for 2-, 3-, and 4-dimen-
sional Ising models

d z(5) 2(B2) 2(F) B/v

2 0.36 £0.05 0.40 £ 0.05 0.40 £0.05 0.25

3 0.60 £0.05 0.60 = 0.09 0.60 = 0.09 0.5185
4 0.74 £0.05 0.75+0.19 0.70 £0.19 1.0

First three columns are the values obtained from scaling functions S(¢), By (t)
and F' (1), respectively, and the fourth column includes the literature values.

related to thermodynamic critical exponents of the d-dimen-
sional Ising model. The difference between these two cluster
algorithms comes from the updating procedure. In the Wolff
cluster algorithm at each step one cluster is picked among the
existing clusters which indicates that a Wolff cluster update
is related to the average cluster size. Average cluster size is
a quantity which is related to specific heat. Hence Baillie and
Coddington suggested that the dynamic critical exponent of the
Wolff algorithm is related to «/v. In case of the Swendsen—
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Wang algorithm all clusters are defined and flipped according
to a given probability. In this sense dynamic behavior is related
to average magnetization. Hence the dynamic exponent is re-
lated to B/v. This conjecture suggests that the Wolff algorithm
for the Ising model in all three dimensions must have vanishing
critical dynamic exponent while for the Swendsen—Wang algo-
rithm dynamic critical exponent has a value of 0.25, 0.5185 and
1.0 for 2-, 3-, and 4-dimensional Ising models. Literature val-
ues are in good agreement with the conjectured behavior of both
Wolff and Swendsen—Wang cluster algorithms [2-9,22-24].

4. Conclusion

In this work we have considered the dynamic scaling be-
havior of moments of magnetization, ((S")), Binder’s cumulant
(B> (1)) and the renormalization function (F'(¢)) for 2-, 3-, and
4-dimensional Ising models using the Swendsen—Wang algo-
rithm. The values of dynamic critical exponent (z) obtained
using this algorithm vary between 0.25 and 1.00, depending on
the dimension, as shown in Table 1. One can see from the re-
sults of dynamic scaling that scaling is very good, the errors
are very small, and these values are in good agreement with the
literature values [2-9,22-24]. In our previous work [9], we cal-
culated the dynamic critical exponent of the Wolff Algorithm
using the same method, and we have observed that our results
are consistent with vanishing dynamic critical exponent. Con-
sidering the finite size effects and time consuming iterations
necessary for the calculations using autocorrelation times, one
can say that it is more advantageous to use this method and it
serves as a powerful method to study the dynamic critical be-
havior of spin models.
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