Instrumental Achievements

Crystal Structure of N, N, N', N'-Tetrakis(methyldiphenylphosphino)-bis-(2'-phenoxy)-3,6-dioxaoctane

Tuncer Hökelek,*† İrfan Yamak,** and Zeynel Kiliç**

*Hacettepe University, Department of Physics, 06532 Beytepe-Ankara, Turkey **Ankara University, Department of Chemistry, 06100 Tandoğan-Ankara, Turkey

The title molecule, $[C_{70}H_{68}N_2O_4P_4]$, is a polydentate podand consisting of four etheral oxygens, two tertiary amine nitrogens and four diphenylphosphin groups. It crystallizes in the triclinic space group $P\bar{1}$, and there is only one half a molecule in the asymmetric unit. The coordinations around the N and P atoms are pyramidal. The conformations about C20-C21, O2-C21 and O2-C22 are *gauche*, *anti* and *anti*, respectively.

(Received June 4, 2001; Accepted July 7, 2002)

Forty years ago, application of the Mannich reaction to the synthesis of aminomethylphosphines developed a new research area for the synthesis of novel phosphine ligands. The syntheses of some macrocyclic multidentate crown-ethers and podands containing P-C-N linkages have been reported. 4.4

The title ligand was prepared from a mixture of triethylene glycol bis(2-aminophenyl ether)⁵ (2.66 g, 8.00 mmol), diphenylphosphine (5.54 mL, 32.0 mmol) and formaldehyde (7.00 mL, 37% solution in water) in benzene (150 mL) at 55°C, with argon being passed over for 6 h. After the evaporation of benzene, the residue was crystallized from dichloromethane, yield 5.85 g (65%), m.p. 125°C.

The structure was solved by direct methods. Since the difference synthesis did not clarify the positions of the H atoms, they were positioned geometrically with C-H distances of 0.97 and 0.93 Å for CH₂ and CH, respectively, and a riding model was used during the refinement.

The results of X-ray structure determination are given in Tables 1 - 3.

The title molecule, which is a polydentate podand (Fig. 2), consists of four etheral oxygens, two tertiary amine nitrogens and four diphenylphosphin groups. It forms stable complexes with some lanthanides and transition-metal cations. The asymmetric unit contains only one half molecule.

The sums of the bond angles, around N1, P1 and P2 atoms [348.2(5), 301.6(3) and 304.2(3)°, respectively] are the indications of pyramidality. The ϕ_{CC} (O1-C20-C21-O2), ϕ_{CO} (C20-C21-O2-C22) and ϕ_{OC} (C21-O2-C22-C22) torsion angles

Fig. 1 Chemical diagram.

are -67.9(7), -176.5(5) and $179.9(7)^{\circ}$, respectively, showing that the conformations about C20-C21 is *gauche* and those around C21-O2 and O2-C22 are *anti*.

The O1-C19 [1.369(7)Å] bond is shorter than the average of the remaining O-C [1.415(7)Å] bonds, due to the electron withdrawing of the phenyl ring. C19-O1-C20 [119.1(5)°] bond

Table 1 Crystal and experimental data

Formula: C₇₀H₆₈N₂O₄P₄ Formula weight = 1125.14Crystal system: triclinic Space group: PĪ a = 10.841(2)Å b = 11.800(2)Å c = 13.071(2)Å $\alpha = 70.48(2)$ $\beta = 79.15(2)^{\circ}$ $\gamma = 78.22(2)^{\circ}$ $V = 1529.7(4)\text{Å}^3$ $D_x = 1.221 \text{ g/cm}^3$ $\mu(\text{Cu K}_{\alpha}) = 1.531 \text{ mm}^{-1}$ T = 294 KCrystal color: colorless Crystal size: $0.30 \times 0.25 \times 0.20$ mm $\lambda(\text{Cu K}_{\alpha}) = 1.54184 \text{ Å}$ R = 0.0587wR = 0.1912Weighting scheme: $w = 1/[\sigma^2(F_0^2) + (0.0777P)^2 + 0.4613P]$ where $P = (F_0^2 + 2F_c^2)/3$ No. of reflections measured = 5702No. of reflections used = 3427 $[I > 2\sigma(I)]$ No. of parameters = 362Goodness-of-fit = 1.199 $(\Delta/\sigma)_{\text{max}} = 0.007$ $(\Delta \rho)_{\text{max}} = 0.379$ $(\Delta \rho)_{\min} = -0.209$ $2\theta_{\text{max}} = 148.52$ Measurements: Enraf-Nonius CAD-4 diffractometer Program system: CAD-4 EXPRESS Software Structure determination: MolEN

Refinement: full matrix least-squares

[†] To whom correspondence should be addressed.

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters

thermal parameters							
Atom	х	у	z	$U_{ m iso}$			
P1	0.9284(2)	0.3063(1)	0.3751(1)	0.0602(5)			
P2	0.6204(2)	0.7212(1)	0.2927(1)	0.0609(5)			
O 1	0.9001(4)	0.6308(4)	0.0549(3)	0.064(1)			
O2	0.9645(4)	0.8672(4)	-0.0179(4)	0.068(1)			
N1	0.8194(5)	0.5364(4)	0.2687(4)	0.057(1)			
C1	1.0832(6)	0.3538(6)	0.3669(5)	0.062(2)			
C2	1.1757(7)	0.2823(7)	0.4343(6)	0.081(2)			
C3	1.2907(7)	0.3189(9)	0.4226(7)	0.093(3)			
C4	1.3193(8)	0.4256(9)	0.3451(8)	0.092(2)			
C5	1.2299(8)	0.4947(8)	0.2760(7)	0.091(2)			
C6	1.1143(7)	0.4586(7)	0.2877(6)	0.075(2)			
C7	0.9010(6)	0.2161(5)	0.5201(5)	0.060(1)			
C8	0.8741(7)	0.1006(6)	0.5459(6)	0.076(2)			
C9	0.8543(8)	0.0271(7)	0.6551(8)	0.091(2)			
C10	0.8624(8)	0.0708(8)	0.7375(7)	0.092(3)			
C11	0.8896(9)	0.1871(8)	0.7143(6)	0.091(2)			
C12	0.9084(8)	0.2588(6)	0.6059(6)	0.078(2)			
C13	0.8198(6)	0.4498(5)	0.3788(5)	0.062(2)			
C14	0.7661(5)	0.5084(5)	0.1904(5)	0.051(1)			
C15	0.6768(6)	0.4298(6)	0.2193(6)	0.068(2)			
C16	0.6255(7)	0.4072(7)	0.1393(7)	0.080(2)			
C17	0.6589(7)	0.4644(7)	0.0310(7)	0.074(2)			
C18	0.7523(7)	0.5408(6)	-0.0005(5)	0.066(2)			
C19	0.8065(6)	0.5601(5)	0.0793(5)	0.056(1)			
C20	0.9403(7)	0.6921(6)	-0.0566(5)	0.065(2)			
C21	1.0310(7)	0.7721(6)	-0.0598(6)	0.074(2)			
C22	1.0398(6)	0.9529(6)	-0.0228(6)	0.069(2)			
C23	0.5691(6)	0.7733(5)	0.1557(5)	0.060(1)			
C24	0.6371(6)	0.8420(6)	0.0612(6)	0.065(2)			
C25	0.5896(9)	0.8791(7)	-0.0379(6)	0.085(2)			
C26	0.474(1)	0.8478(8)	-0.0434(8)	0.098(3)			
C27	0.4079(9)	0.7830(8)	0.0475(9)	0.097(3)			
C28	0.4552(7)	0.7444(7)	0.1486(7)	0.077(2)			
C29	0.6231(7)	0.8690(6)	0.3088(5)	0.064(2)			
C30	0.5052(8)	0.9299(8)	0.3413(7)	0.087(2)			
C31	0.498(1)	1.041(1)	0.3598(9)	0.116(3)			
C32	0.604(2)	1.0911(8)	0.3446(7)	0.113(4)			
C33	0.720(1)	1.0325(8)	0.3149(7)	0.091(2)			
C34	0.7289(8)	0.9212(7)	0.2962(6)	0.078(2)			
C35	0.7927(6)	0.6649(5)	0.2661(5)	0.059(1)			

 $B_{\rm eq} = (8\pi^2/3) \Sigma_i \Sigma_j U_{ij} a_i * a_j * (\boldsymbol{a}_i \cdot \boldsymbol{a}_j).$

angle is larger than C21–O2–C22 [113.8(5)°]. On the other hand, the exocyclic angles O1–C19–C14 [116.2(5)] and N1–C14–C19 [118.8(5)°] are unexpectedly narrowed, while the O1–C19–C18 [122.9(6)] and C15–C14–N1 [122.9(6)°] angles are broadened.

References

- H. Coates and P. A. T. Hoye, Br. Patent, 854182, 16 Nov. 1960.
- 2. L. Maier, Helv. Chim. Acta, 1965, 48, 133.

Table 3 Bond distances (Å) and angles with torsion angles (°)

P1	C7	1.840(6)	C20	C21	1.48(1)
P1	C1	1.850(7)	N1	C14	1.420(7)
P1	C13	1.865(6)	N1	C13	1.460(7)
P2	C29	1.831(7)	N1	C35	1.475(7)
P2	C23	1.843(6)	O1	C19	1.369(7)
P2	C35	1.859(6)	O1	C20	1.422(7)
C22	C22'	1.48(1)	O2	C22	1.403(7)
			O2	C21	1.419(8)
C1-P	P1-C13	100.0(3)	C23-P2-	-C35	103.2(3)
C7-P	P1-C1	101.9(3)	C29-P2-	-C23	99.3(3)
C7-P	P1-C13	99.7(3)	C29-P2-	-C35	101.7(3)
C13-	N1-C35	114.0(5)	N1-C13	-P1	110.2(4)
C14-	N1-C13	118.3(5)	N1-C35	-P2	113.2(4)
C14-	N1-C35	115.9(4)	O1-C20	-C21	108.2(5)
C19-	O1-C20	119.1(5)	O2-C21	-C20	108.8(6)
C22-	C22-O2-C21		O2-C22	-C22'	108.7(7)
		113.8(5)			. ,
C13-	N1-C35-P2	-81.6(5)	C29-P2-	-C35-N1	170.0(4)
C14-	C14-N1-C13-P1		C35-N1	-C13-P1	-151.2(4)
C14-	C14-N1-C35-P2		N1-C14	-C19-O1	2.7(8)
C21-O2-C22-C22'		60.8(6) 179.9(7)	O1-C20-C21-O2		-67.9(7)
C23-P2-C35-N1		-87.3(4)			
		(.)			

Fig. 2 Molecular structure of the title compound with atom-numbering scheme. The thermal ellipsoids are drawn at the 20% probability level.

- 3. H. Hope, M. Viggiano, B. Moezzi, and P. P. Power, *Inorg. Chem.*, **1984**, *23*, 2550.
- C. J. M. Frank, van V. Veggel, W. Verboom, and D. N. Reinhoudt, *Chem. Rev.*, **1994**, *94*, 279.
- M. Yıldız, Z. Kılıç, and T. Hökelek, J. Mol. Struct., 1998, 441, 1.