Crystal Structure of Gadolinium 3,5-Dinitrobenzoate Dihydrate

Dinçer ÜlkÜ*, Cengiz Arici*, M. Nawaz TAhir* and Canan Ünaleroğlu**
*Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey
**Department of Chemistry, Hacettepe University, Beytepe 06532, Ankara, Turkey

Rare earth carboxylates may have chelating, bridging and chelating-bridging modes of coordination simultaneously or separatively. ${ }^{1-5}$ The title compound, catena-poly[[tetraaqua- $1 \kappa^{2} O, 2 \kappa^{2} O$-tetrakis (μ-3,5-dinitroben-zoato- $O: O^{\prime}$)digadolinium]-bis (μ-3,5-dinitrobenzoato$\left.\left.O: O^{\prime}\right)\right]$ dihydrate $\left[\mathrm{Gd}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, was synthesized in order to study the structure and to determine the mode of coordination around Gd.
In a mole ratio of 1:1, 3,5-dinitrobenzoic acid and NaHCO_{3} were added into hot distilled water and stirred

Fig. 1 Chemical diagram of the polymeric structure.

Fig. 2 ORTEP drawing of the asymmetric unit of the title compound with the atom numbering scheme. Geometrically placed H atoms have been omitted for clarity.
by a magnetic stirrer until complete dissolution. A solution containing Gd^{3+} was prepared by dissolving an appropriate quantity ($1: 3 \mathrm{~mol}$ of 3,5 -dinitrobenzoic acid) of the $\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (prepared from metallic Gd) in 10 ml of water. Within two weeks, crystals were obtained by slow evaporation of the filtered final solution. A chemical diagram of the title compound is shown in Fig. 1.
The coordination around a Gd ion is eightfold (Fig. 2). Six carboxylate O atoms [O1, O3, O5, O2 ${ }^{\mathrm{i}}, \mathrm{O} 4, \mathrm{O}$;

Table 1 Crystal and experimental data

```
Formula: \(\left[\mathrm{Cd}_{21}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\)
Formula weight=1689.26
Crystal system: triclinic
Space group: \(P \overline{1} \quad Z=1\)
\(a=9.2741(12) \AA\)
\(b=11.4833(11) \AA\)
\(c=13.7452(13) \AA\)
\(\alpha=107.109(3)^{\circ}\)
\(\beta=90.499(3)^{\circ}\)
\(\gamma=93.824(2)^{\circ}\)
\(V=1395.3(3) \AA^{3}\)
\(D_{\mathrm{x}}=2.010 \mathrm{~g} / \mathrm{cm}^{3}\)
\(\mu=2.490 \mathrm{~mm}^{-1}\) (Int. Tables for X-ray Crystallography)
\(2 \theta_{\max }=55.6^{\circ}\) with \(\mathrm{Mo} \mathrm{K}_{\alpha}\)
\(T=295 \mathrm{~K}\)
Colorless
\(F(000)=830\)
Crystal size: \(0.35 \times 0.12 \times 0.10 \mathrm{~mm}\)
Radiation=Mo \(\mathrm{K}_{\alpha}\)
\(R=0.041\)
\(R w=0.040\)
\((\Delta / \sigma)=0.0004\)
\((\Delta \rho)_{\max }=1.34 \mathrm{e}^{-3}(0.96 \AA\) from Gd)
\((\Delta \rho)_{\min }=-0.25 \mathrm{e}^{-3}\)
No. of reflections used \(=4121\)
No. of parameters=469
Goodness-of-fit=1.01
Measurement: Enraf Nonius CAD-4 diffractometer
Program system: CAD-4 EXPRESS Software
Structure determination: SIR(88)-MolEN
Treatment of hydrogen atoms: The water H atoms were
    found from a difference map. H atoms bonded to C atoms
        were placed geometrically \(0.95 \AA\) from their parent atoms
        and a riding model was used for all H atoms.
    Refinement: full matrix least-squares (MolEN)
```

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms

Atom	x	y	z	$B_{\mathrm{eq}} \mathrm{I} \AA^{2}$
Gd	0.22914(5)	$0.01314(4)$	0.49093(4)	$1.574(7)$
O1	0.1430(6)	$0.0456(4)$	$0.6618(4)$	2.3(1)
O2	-0.0929(6)	-0.0094(5)	0.6541 (4)	2.4(1)
03	0.0497(6)	-0.1460(4)	0.4671(4)	$2.5(1)$
O4	0.1745 (6)	0.2251 (4)	0.5359(4)	2.6(1)
O5	0.4329(6)	$0.1088(5)$	0.5883(4)	$2.5(1)$
O6	$0.3383(6)$	-0.1343(4)	$0.3577(4)$	$2.5(1)$
07	0.3261 (6)	-0.1367(4)	0.5667(4)	2.6(1)
08	$0.3784(6)$	$0.1298(5)$	$0.3923(4)$	$2.6(1)$
09	0.3433 (7)	$0.0707(6)$	1.0145(5)	4.4(2)
O10	$0.2247(8)$	$0.1675(6)$	1.1429(4)	4.8(2)
011	-0.2767(8)	0.2288(7)	1.0947(5)	5.7(2)
012	-0.3551(7)	0.2194(6)	0.9459(5)	5.4(2)
013	-0.2792(7)	-0.6607(5)	0.3170(5)	4.5(2)
014	-0.1104(8)	-0.7844(5)	0.2906 (5)	4.4(2)
015	0.3868(7)	-0.6255(5)	0.3598 (6)	5.8(2)
016	$0.4362(7)$	-0.4326(6)	0.4238(5)	4.6(2)
017	0.8185(7)	0.5485 (6)	0.8573(5)	4.8(2)
018	$0.6703(8)$	0.6452(5)	0.9690(5)	4.4(2)
019	$0.1637(8)$	$0.5260(6)$	0.9228(6)	6.9(2)
O20	0.0880(6)	$0.3574(6)$	0.8134(5)	4.4(2)
O21	$0.4774(9)$	$0.9353(9)$	$0.7915(6)$	$9.1(3)$
N1	$0.2387(8)$	$0.1232(6)$	1.0517(5)	3.1(2)
N2	-0.2629(9)	0.2070(6)	1.0034(5)	$3.9(2)$
N3	-0.1531(8)	-0.6823(5)	0.3164(5)	2.9(2)
N4	$0.3518(8)$	-0.5211(6)	$0.3902(5)$	3.2(2)
N5	$0.7001(8)$	0.5619(6)	0.8950(5)	3.3(2)
N6	0.1816 (8)	0.4321(6)	0.8568 (6)	$3.6(2)$
C1	$0.0158(9)$	0.0788(6)	0.8145(6)	2.0(2)
C2	$0.1331(9)$	$0.0822(7)$	$0.8777(6)$	2.4(2)
C3	$0.1161(9)$	0.1252(6)	$0.9826(6)$	$2.0(2)$
C4	-0.009(1)	0.1690 (7)	$1.0255(6)$	2.8(2)
C5	-0.124(1)	$0.1650(7)$	$0.9606(6)$	2.9(2)
C6	-0.1144(9)	0.1203 (7)	0.8568(6)	2.2(2)
C7	$0.0224(8)$	0.0336(6)	0.7001 (6)	2.0(2)
C8	0.0096(8)	-0.3628(6)	0.4164(5)	1.8(2)
C9	-0.0906(9)	-0.4606(7)	0.3831 (6)	$2.2(2)$
C10	-0.0443(9)	-0.5765(6)	$0.3496(5)$	2.1(2)
Cll	$0.1007(9)$	-0.6007(7)	$0.3504(6)$	$2.5(2)$
C12	$0.1957(9)$	-0.4996(7)	$0.3863(6)$	2.2(2)
C13	0.1544(9)	-0.3820(7)	$0.4187(6)$	2.1 (2)
C14	-0.0417(9)	-0.2352(6)	$0.4514(5)$	1.7(2)
C15	0.5025(8)	0.2770(6)	0.7323(5)	1.5(2)
C16	$0.6135(9)$	0.3608(6)	0.7803(6)	2.1(2)
C17	$0.5800(9)$	0.4693(7)	0.8494(6)	2.5(2)
C18	0.443 (1)	$0.4954(7)$	0.8748(6)	$3.0(2)$
C19	$0.3361(9)$	$0.4104(7)$	0.8290(6)	2.4 (2)
C20	$0.3601(9)$	$0.3010(7)$	0.7567(6)	$2.5(2)$
C21	0.5324(8)	0.1640(6)	0.6484(6)	$1.9(2)$

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.
symmetry code: (i) $-x,-y, 1-z]$ and two water O atoms (O7, O8) constitute the coordination sphere. In the coordination sphere the shortest bond length ($2.321(6) \AA$ is between the central Gd ion and the carboxylate oxygen, O5; the longest Gd-O distance [2.530(6) \AA] involves the water oxygen 08 . The $\mathrm{Gd}^{-} \mathrm{O}_{\text {carboxylate }}$ distances, ranging from 2.321 (6) to $2.419(5) \AA$, are shorter than the $\mathrm{Gd}-\mathrm{O}_{\text {water }}[2.469(5)$ and $2.530(6) \AA$] distances. Linear polymeric chains are formed, because the gadolinium ions are bridged alternately by two and four carboxylate groups. Within the polymeric chains, only the bridging mode of coordination is observed.
The two different Gd-Gd distances of 4.2547(15) and $5.0620(16) \AA$ are a consequence of alternate bridging by four and two ligands, respectively. This structure is extremely similar to the polymeric chains

Table 3 Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

Gd	$\mathrm{Gd}^{\text {i }}$	4.2547(15)		
Gd	Gdi	5.0620(16)		
Gd	O1	$2.419(5)$		
Gd	$\mathrm{O}^{\text {i }}$	$2.339(6)$		
Gd	03	$2.334(5)$		
Gd	O 4	2.419 (5)		
Gd	O5	2.321 (6)		
Gd	06	2.383(5)		
Gd	07	$2.469(5)$		
Gd	O8	$2.530(6)$		
Ol	C7	1.257(9)		
O2	C7	1.233 (9)		
03	C14	1.251 (9)		
O4	C14	1.254(10)		
O5	C21	$1.239(9)$		
06	C21	$1.265(9)$		
O1-Gd-O3		78.22(18)	O5- Gd- 07	73.07(19)
Ol-Gd-O5		78.48(19)	O5-Gd-O8	70.90(19)
O1-Gd-07		70.07(18)	O5-Gd-06	100.22(19)
O1-Gd-O8		138.26(18)	O6- Gd -07	72.90(18)
$01-\mathrm{Gd}-\mathrm{O}^{\text {i }}$		126.94(19)	O6- Gd -O8	73.01(18)
O1-Gd-O4		78.44(17)	07-Gd-O8	123.97(18)
O1- Gd-O6		141.62(18)	Gd- O1-C7	135.3(5)
$\mathrm{O}_{2}{ }^{\mathrm{i}}-\mathrm{Gd}-\mathrm{O} 3$		73.34(19)	Gd^{i} - $\mathrm{O}^{-}-\mathrm{C} 7$	141.7(5)
$\mathrm{O} 2{ }^{\text {i }}$ - Gd -05		142.3(2)	Gd- O3-C14	176.8(5)
O2'-Gd-O7		137.4(2)	Gdi- $\mathrm{O}^{\text {4 }}$-C14	110.8(4)
O2'-Gd-O8		72.39 (19)	Gd- O5-C21	173.5(5)
O2'- Gd^{j}-O4		80.43(19)	Gdi- 06 - C 21	129.0(5)
O2'- Gd-O6		76.68(19)	O1-C7-O2	127.1(7)
O3-Gd-O5		144.1(2)	O1-C7-C1	117.1(7)
O3-Gd-07		73.51(18)	O2-C7-Cl	$115.9(7)$
O3-Gd-08		141.26(19)	O3-C14-O4	123.6(7)
O3-Gd-O4		122.41(19)	O3- $\mathrm{C} 14-\mathrm{C} 8$	118.8(7)
O3- Gd-06		82.03(19)	O4- C14-C8	117.6(6)
O4- Gd-O5		78.6(2)	O5-C21-06	124.2(7)
O4- Gd-07		140.92(18)	O5- C21-C15	119.3(7)
O4- Gd-O8		68.36(18)	O6-C21-C15	116.4(7)
O4- Gd -06		139.48(18)		

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $1-x,-y, 1-z$
observed in cerium 3,5-dinitrobenzoato dihydrate ${ }^{6}$ and catena- $\{$ (tetraaqua)hexakis(3,5-dinitrobenzenato)disamarium\} monohydrate. ${ }^{7}$ Table 1 gives the crystal and experimental data, while a final atomic parameters are given in Table 2. The bond distances and angles are given in Table 3.

References

1. J. W. Bats, R. Klaus and H. Fuess, Acta Crystallogr., B35, 1225 (1979).
2. M. S. Hiyalov, I. R. Amiraslanov, S. Mamedov and E. M. Movsumov, J. Struct. Chem. (USSR), T22, 113 (1981).
3. F. J. Ma, S. Z. Jin and Z. J. Ni, Acta Crystallogr., C50, 1008 (1994a).
4. F. J. Ma, S. Z. Jin and Z. J. Ni, Acta Crystallogr., C50, 1010 (1994b).
5. J. W. Moore, M. D. Glick and W. A. Baker, J. Am. Chem. Soc., 94, 1858 (1971).
6. M. N. Tahir, D. Ülkü, C. Ünaleroğlu and E. M. Movsumov, Acta Crystallogr., C52, 2676 (1996).
7. C. Arıcı, D. Ülkü, M. N. Tahir and C. Ünaleroğlu, Acta Crystallogr., C55, 198 (1999).
(Received February 8, 1999)
(Accepted June 3, 1999)
