# Crystal Structure of 4-\{[(1E)-(2-Hydroxynaphthyl)methylidene]amino\}-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one 

Tuncer Höкelek,** Zeynel Kiliç,** Muhammed Işiklan,** and Mustafa Hayvali**<br>*Hacettepe University, Department of Physics, 06532 Beytepe-Ankara, Turkey<br>**Ankara University, Department of Chemistry, 06100 Tandoğan-Ankara, Turkey

(Received March 26, 2001; Accepted August 22, 2001)

In 2-hydroxy aldimine Schiff bases, two types of hydrogen bonds [either $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (keto-amine tautomer) or $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ (phenol-imine tautomer)] can exist. It is claimed that the hydrogen-bond type depends neither on the stereochemistry of the molecule nor on the sort of substituent bonded to the N imino atom, but on the kind of aldehyde used. ${ }^{1}$
In the solid state, it is also claimed that only an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type hydrogen bond is present in naphthaldimines regardless of the kind of N -substituents, aryl or alkyl. ${ }^{2}$ However, our crystallographic studies have shown an intramolecular ( $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ (phenol-imine tautomer) hydrogen bond, which is in contrast to observations reported in the literature. ${ }^{2,3}$ The title ligand was prepared from a mixture of 2-hydroxy-1-naphthaldehyde $(0.60 \mathrm{~g}, 3.5 \mathrm{mmol})$ and 4-


Fig. 1 Chemical diagram.


Fig. 2 Molecular structure of the title compound along with the atom-numbering scheme. The thermal ellipsoids are drawn at the 50\% probability level.
aminophenazone (4-AAP) ( $0.71 \mathrm{~g}, 3.5 \mathrm{mmol}$ ) in boiling methanol $(100 \mathrm{ml})$. After the precipitate was filtered, the residue was dissolved in $\mathrm{CHCl}_{3}-\mathrm{EtOH}(3: 1)$ and set aside for crystallization (yield $0.80 \mathrm{~g}, 64 \%$; m.p. 491 K ). 4-AAP and its derivatives are very important compounds in pharmacology and biochemistry. They are especially used as anti-inflammatory drugs. ${ }^{4}$
The results of X-ray structure determinations are given in Tables 1-3. The hydrogen atoms were located by a difference Fouirer synthesis and a geometrical calculation, with the parameters of 4 hydrogen atoms (H1, H71, H111, H181) (out of 19) being refined.

The title molecule (Fig. 2) has a short intramolecular N...H-O hydrogen bond [O1-H1 0.953(3), H1 $\cdots \mathrm{N} 11.497(3)$, N1 $\cdots \mathrm{O} 1$

Table 1 Crystal and experimental data

[^0]Table 2 Final atomic coordinates and equivalent isotropic thermal parameters

| Atom | $x$ | $y$ | $z$ | $B_{\text {eq }} / \AA^{2}$ |
| :---: | ---: | :---: | :---: | ---: |
|  | $0.8175(4)$ | $0.3734(3)$ | $0.6973(2)$ | $5.09(8)$ |
| O2 | $0.3430(4)$ | $0.5300(2)$ | $0.4960(2)$ | $4.48(7)$ |
| N1 | $0.5681(4)$ | $0.4278(3)$ | $0.6282(2)$ | $3.82(7)$ |
| N2 | $0.2064(4)$ | $0.5472(3)$ | $0.6301(2)$ | $3.83(8)$ |
| N3 | $0.2293(4)$ | $0.5242(3)$ | $0.7217(2)$ | $3.92(8)$ |
| C1 | $0.8411(5)$ | $0.3673(3)$ | $0.4465(3)$ | $3.95(9)$ |
| C2 | $0.7571(6)$ | $0.3828(4)$ | $0.3656(3)$ | $5.1(1)$ |
| C3 | $0.8183(7)$ | $0.3640(5)$ | $0.2816(4)$ | $6.0(1)$ |
| C4 | $0.9670(7)$ | $0.3300(4)$ | $0.2746(4)$ | $5.9(1)$ |
| C5 | $1.0523(7)$ | $0.3157(4)$ | $0.3497(4)$ | $5.8(1)$ |
| C6 | $0.9944(6)$ | $0.3344(3)$ | $0.4375(4)$ | $4.6(1)$ |
| C7 | $1.0814(6)$ | $0.3190(4)$ | $0.5178(4)$ | $5.5(1)$ |
| C8 | $1.0232(6)$ | $0.3316(4)$ | $0.6003(4)$ | $5.3(1)$ |
| C9 | $0.8707(5)$ | $0.3628(3)$ | $0.6113(3)$ | $4.3(1)$ |
| C10 | $0.7790(5)$ | $0.3831(3)$ | $0.5359(3)$ | $3.78(9)$ |
| C11 | $0.6259(5)$ | $0.4195(3)$ | $0.5481(3)$ | $3.84(9)$ |
| C12 | $0.4249(5)$ | $0.4675(3)$ | $0.6422(3)$ | $3.44(8)$ |
| C13 | $0.3297(5)$ | $0.5148(3)$ | $0.5787(3)$ | $3.62(9)$ |
| C14 | $0.3592(5)$ | $0.4729(3)$ | $0.7270(3)$ | $3.85(9)$ |
| C15 | $0.4110(7)$ | $0.4311(4)$ | $0.8139(3)$ | $5.4(1)$ |
| C16 | $0.1000(6)$ | $0.5279(4)$ | $0.7843(3)$ | $5.1(1)$ |
| C17 | $0.0978(5)$ | $0.6150(3)$ | $0.6042(3)$ | $3.36(8)$ |
| C18 | $-0.0133(6)$ | $0.5914(3)$ | $0.5418(3)$ | $4.2(1)$ |
| C19 | $-0.1179(7)$ | $0.6570(4)$ | $0.5152(4)$ | $5.9(1)$ |
| C20 | $-0.1137(7)$ | $0.7439(4)$ | $0.5510(4)$ | $6.0(1)$ |
| C21 | $-0.0019(7)$ | $0.7660(4)$ | $0.6129(4)$ | $5.9(1)$ |
| C22 | $0.1043(6)$ | $0.7024(3)$ | $0.6406(3)$ | $4.6(1)$ |

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i} * a_{j}^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.
$2.527(4) \AA$ N $1 \cdots$ H1-O1 $155.7(4)^{\circ}$ ], which means that the compound is in the phenol-imine form, as in $4-\{[(1 E)-(2-$ hydroxyphenyl)methylidene]amino \}-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one ${ }^{5}$ [O-H $0.97(3), \mathrm{H} \cdots \mathrm{N} \quad 1.71(3)$, $\mathrm{N} \cdots \mathrm{O} 2.607(3) \AA$, $\left.\mathrm{N} \cdots \mathrm{H}-\mathrm{O} 153(2)^{\circ}\right]$. These results are clear evidence of the importance of the N -substituent in 2-hydroxy naphthaldimine Schiff bases. The rings, ( $\mathrm{N} 1, \mathrm{H} 1, \mathrm{O} 1, \mathrm{C} 9, \mathrm{C} 10$, C 11 ) and ( $\mathrm{N} 2, \mathrm{~N} 3, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14$ ), are essentially planar with maximum deviations of $\mathrm{H} 1[0.08(9)]$ and $\mathrm{N} 3[-0.022(4) \AA$ ] from the best least-squares planes, respectively.

Table 3 Bond distances $(\AA)$ and angles with torsion angles $\left({ }^{\circ}\right)$

| O1-C9 | $1.343(5)$ | N2-C17 | $1.422(5)$ |
| :--- | :---: | :--- | ---: |
| O1-H1 | $0.953(3)$ | N3-C14 | $1.362(6)$ |
| O2-C13 | $1.239(5)$ | N3-C16 | $1.452(6)$ |
| N1-C11 | $1.285(5)$ | C10-C11 | $1.455(6)$ |
| N1-C12 | $1.394(6)$ | C12-C13 | $1.426(6)$ |
| N2-N3 | $1.399(4)$ | C12-C14 | $1.369(6)$ |
| N2-C13 | $1.395(5)$ | C14-C15 | $1.487(6)$ |
|  |  |  |  |
| C9-O1-H1 | $118.5(3)$ | O2-C13-C12 | $132.3(4)$ |
| C11-N1-C12 | $121.4(4)$ | N2-C13-C12 | $104.8(3)$ |
| N3-N2-C13 | $109.4(3)$ | N3-C14-C12 | $109.2(4)$ |
| C13-N2-C17 | $127.1(3)$ | N3-C14-C15 | $121.7(4)$ |
| N2-N3-C14 | $107.5(3)$ | O1-C9-C10 | $122.2(4)$ |
| N2-N3-C16 | $119.6(3)$ | N1-C11-C10 | $120.4(4)$ |
| C14-N3-C16 | $128.9(4)$ | N1-C12-C13 | $128.8(3)$ |
| O2-C13-N2 | $122.9(4)$ | N1-C12-C14 | $122.0(4)$ |
|  |  |  |  |
| C12-N1-C11-C10 | $176.2(4)$ | C17-N2-C13-O2 | $-13.8(7)$ |
| C13-N2-N3-C16 | $-163.4(4)$ | N2-N3-C14-C15 | $-175.4(4)$ |
| C17-N2-N3-C14 | $-167.5(4)$ | C16-N3-C14-C15 | $-18.7(8)$ |
| C17-N2-N3-C16 | $33.1(6)$ | O1-C9-C10-C11 | $2.5(7)$ |

The $\phi_{\mathrm{CN}}$ torsion angle (C10-C11-N1-C12) is $176.2(4)^{\circ}$, which shows that the configuration about the C11-N1 bond is anti (1E).

## References

1. M. Gavranic, B. Kaitner, and E. Mestrovic, J. Chem. Cryst., 1996, 26, 23.
2. B. Kaitner and G. Pavlovic, Acta Crystallogr., 1996, C52, 2573.
3. Y. Elerman, M. Kabak, A. Elmali, and I. Svoboda, Acta Crystallogr., 1998, C54, 128.
4. A. Lodzinska, F. Golinska, and F. Rozploch, Pol. J. Chem., 1989, 63, 355.
5. T. Hökelek, M. Işıklan, and Z. Kılıç, Acta Crystallogr., 2001, C57, 117.

[^0]:    Formula: $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$
    Formula weight $=357.42$
    Crystal system: orthorhombic
    Space group: $P 2_{1} 2_{1} 2_{1} \quad Z=4$
    $a=8.717(2) \AA$
    $b=14.561(3) \AA$
    $c=14.690(2) \AA$
    $V=1864.7(5) \AA^{3}$
    $D_{\mathrm{x}}=1.273 \mathrm{~g} / \mathrm{cm}^{3}$
    $\mu\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=0.63 \mathrm{~mm}^{-1}$
    $T=293 \mathrm{~K}$
    Orange
    Crystal size: $0.15 \times 0.20 \times 0.30 \mathrm{~mm}$
    $\lambda\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=1.54184$
    $R=0.051$
    $w R=0.061$
    No. of reflections measured $=2201$
    No. of reflections used $=1577$
    [ $\mathrm{F}>3.0 \sigma(F)$ ]
    No. of parameters $=260$
    Goodness-of-fit $=0.84$
    $(\Delta / \sigma)_{\text {max }}=0.01$
    $(\Delta \rho)_{\text {max }}=0.20 \mathrm{eA}^{-3}$
    $(\Delta \rho)_{\text {min }}=-0.32 \mathrm{e}^{\AA^{-3}}$
    $2 \theta_{\text {max }}=148.7^{\circ}$
    Measurements: Enraf-Nonius CAD-4 diffractometer Program system: CAD-4 EXPRESS Software
    Structure determination: MolEN
    Refinement: full matrix least-squares

