Crystal Structure of 4-(4-Bromophenyl)-1,7,7-trimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2,5-dione

M. Murat Candan,** Engin Kendi,* Mine Yarim,** Selma Saraç** and Mevlüt Ertan**
*Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey
**Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100 Sihhiye, Ankara, Turkey

(Received December 25, 2000; Accepted April 16, 2001)

4-(4-Bromophenyl)-1,7,7-trimethyl-1,2,3,4,5,6,7,8-octa-hydroquinazoline-2,5-dione was obtained from Biginelli-type cyclocondensation ${ }^{1}$ of 5,5-dimethylcyclohexane-1,3-dione with urea and 4-bromobenzaldehyde: yield 1.16 g (62.19\%), m.p. $174-175^{\circ} \mathrm{C}$. A summary of the key crystallographic information is given in Table 1. The atomic coordinates and equivalent isotropic displacement parameters with estimated standard deviations for atoms except H are listed in Table 2, and selected bond lengths and bond angles in Table 3. A perspective view of the title molecule showing the atomnumbering scheme is presented in Fig. 2.

The phenyl ring at C 4 is nearly perpendicular to the

Table 1 Crystal and experimental data
Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2}$
Formula weight $=363.25$
Crystal system: monoclinic
Space group: $P 2_{1} / c \quad Z=4$
$a=11.233(1) \AA$
$b=8.043(1) \AA \quad \beta=95.62(1)^{\circ}$
$c=17.594(2) \AA$
$V=1581.9(3) \AA^{3}$
$D_{\text {c }}=1.525 \mathrm{~g} / \mathrm{cm}^{3}$
$\mu\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=3.614 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Yellow
$F(000)=744$
Crystal size: $0.40 \times 0.40 \times 0.12 \mathrm{~mm}$
$2 \theta_{\text {max }}=148.5^{\circ}$
$R=0.051$
$R w=0.136$
No. of reflection used $=2745 \quad(I>2 \sigma(I))$
No. of parameters $=203$
Goodness-of-fit $=1.13$
$(\Delta / \sigma)_{\max }=0.003$
$(\Delta \rho)_{\max }=0.76 \mathrm{e}^{-3}$
$(\Delta \rho)_{\text {min }}=-0.44 \mathrm{e}^{-3}$
Measurements: Enraf-Nonius CAD-4 diffractometer
Refinement: full matrix least-squares (SHELXL-97)
Program system: CAD-4 EXPRESS software
Structure determination: SHELXS-97
Treatment of hydrogen atoms: geometric calculation

[^0]quinazoline ring system, with the dihedral angle of $84.4(1)^{\circ}$. The observed bond lengths of both $\mathrm{C}-\mathrm{O}$ in these structures are normal. The differences between the lenghts of $\mathrm{C} 2-\mathrm{N} 1$ and $\mathrm{C} 2-$ N3 are $0.065 \AA$, similar to the value of $0.065 \AA$ found in $1,7,7-$ trimethyl-4-(4-methylphenyl)-1,2,3,4,5,6,7,8-octahydro-

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters ($U_{\text {eq }}$) for non-hydrogen atoms

	x		y	z
$U_{\text {eq }} / \AA^{2}$				
Atom	$x 1$	$0.1834(1)$	$0.8698(9)$	$0.0588(5)$
O1	$0.5042(3)$	$1.5551(5)$	$0.1276(2)$	$0.0894(4)$
O2	$0.8420(3)$	$1.0267(5)$	$0.2941(2)$	$0.0620(9)$
N1	$0.8420(3)$	$1.2179(5)$	$0.1981(2)$	$0.0479(8)$
N3	$0.6763(3)$	$1.1812(5)$	$0.2661(2)$	$0.0492(9)$
C2	$0.7878(4)$	$1.1329(5)$	$0.2555(3)$	$0.0461(10)$
C4	$0.5963(3)$	$1.2890(5)$	$0.2173(2)$	$0.0415(9)$
C4a	$0.6678(4)$	$1.3838(5)$	$0.1636(2)$	$0.0427(9)$
C5	$0.6062(4)$	$1.5108(6)$	$0.1170(3)$	$0.0455(9)$
C6	$0.6695(4)$	$1.5815(7)$	$0.0519(3)$	$0.0562(11)$
C7	$0.8035(4)$	$1.6041(6)$	$0.0733(3)$	$0.0477(10)$
C8	$0.8575(4)$	$1.4392(6)$	$0.1037(2)$	$0.0450(9)$
C8a	$0.7846(4)$	$1.3459(5)$	$0.1568(2)$	$0.0414(9)$
C9	$0.8655(5)$	$1.6531(8)$	$0.0023(3)$	$0.0654(14)$
C10	$0.8259(5)$	$1.7404(7)$	$0.1335(3)$	$0.0637(13)$
C11	$0.9629(4)$	$1.1645(7)$	$0.1846(3)$	$0.0588(12)$
C12	$0.4958(4)$	$1.1875(5)$	$0.1765(2)$	$0.0421(9)$
C13	$0.3791(4)$	$1.2153(5)$	$0.1908(3)$	$0.0464(9)$
C14	$0.2865(4)$	$1.1208(6)$	$0.1556(3)$	$0.0540(11)$
C15	$0.3117(4)$	$1.0005(6)$	$0.1054(3)$	$0.0540(11)$
C16	$0.4270(5)$	$0.9683(7)$	$0.0889(3)$	$0.0605(12)$
C17	$0.5181(4)$	$1.0633(6)$	$0.1238(3)$	$0.0531(11)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i} * a_{j} *\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.

Table 3 Selected geometric parameters $\left(\AA \AA^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 15$	$1.903(5)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.342(6)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.232(5)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.465(6)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.216(6)$	$\mathrm{C} 4 \mathrm{a}-\mathrm{C} 8 \mathrm{a}$	$1.364(6)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.407(6)$	$\mathrm{C} 4-\mathrm{C} 12$	$1.516(6)$
$\mathrm{N} 1-\mathrm{C} 8 \mathrm{a}$	$1.382(6)$	$\mathrm{C} 7-\mathrm{C} 9$	$1.540(6)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.466(6)$	$\mathrm{C} 7-\mathrm{C} 10$	$1.527(7)$
C2-N1-C8a	$121.8(4)$	$\mathrm{C} 4 \mathrm{a}-\mathrm{C} 5-\mathrm{C} 6$	$117.4(4)$
C2-N3-C4	$128.2(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$112.4(4)$
N1-C2-N3	$115.7(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$109.3(4)$
N3-C4-C4a	$109.5(3)$	$\mathrm{N} 1-\mathrm{C} 8 \mathrm{a}-\mathrm{C} 8$	$116.4(4)$
C6-C7-C10	$110.4(4)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 9$	$108.0(4)$

Fig. 1 Chemical structure.

Table 4 Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

D-H $\cdots \mathrm{A}$	D $\cdots \mathrm{A}$	D-H	H $\cdots \mathrm{A}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
C11-H11b..O2	$2.700(7)$	0.960	2.255	107.3
N3-H3 ..O1 ${ }^{\mathrm{i}}$	$3.062(5)$	0.860	2.274	152.3

Symmetry codes: (i) $\quad-x+1,+y-1 / 2,-z+1 / 2$
quinazoline-2,5-dione. ${ }^{2}$ This situation can be attributed to the difference in the hybridization of the adjacent carbon atoms C8a and C 4 .

Fig. 2 The ORTEP drawing of the title compound with atom labeling.

An intermolecular hydrogen bond is found between N and O ; geometric details are given in Table 4.

References

1. P. Biginelli, Chem. Ber., 1991, 24, 1317.
2. M. M. Candan, E. Kendi, M. Yarim, S. Saraç, and M. Ertan, Anal. Sci., 2000, submitted.

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed.

