Crystal Structure of 2,3-Dihydro-3-ethyl-9-(phenylsulfonyl)carbazole-4(1H)-one

Tuncer HöKelek ${ }^{* \dagger}$ and Süleyman PAtir**
*Hacettepe University, Department of Physics, 06532 Beytepe, Ankara, Turkey
**Hacettepe University, Department of Science, Faculty of Education, 06532 Beytepe, Ankara, Turkey

(Received April 6, 2000; Accepted July 25, 2000)

The title compound (Fig. 2) may be considered as a synthetic precursor of tetracyclic indole alkaloids, dasycarpidone and uleine, which have been isolated from Aspidosperma. ${ }^{1}$ It was

Fig. 1 Chemical diagram.

Table 1 Crystal and experimental data

Formula: $\mathrm{C}_{20} \mathrm{H}_{99} \mathrm{NO}_{3} \mathrm{~S}$
Formula weight $=353.44$
Crystal system: monoclinic
Space group: $P 2_{1} / c \quad Z=4$
$a=8.138(1) \AA$
$b=11.728(1) \AA$
$c=18.590(1) \AA$
$\beta=102.20(1)^{\circ}$
$V=1734.2(3) \AA^{3}$
$D_{\mathrm{x}}=1.354 \mathrm{~g} / \mathrm{cm}^{3}$
$\mu\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=1.77 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Color: yellow
Crystal size: $0.20 \times 0.25 \times 0.30 \mathrm{~mm}$
$\lambda\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=1.54184 \AA$
$R=0.055 \quad w R=0.066$
No. of reflections measured $=3761$
No. of reflections used $=2505,[F>3.0$ $\sigma(F)]$
No. of parameters $=230$
Goodness-of-fit $=1.13$
$(\Delta / \sigma)_{\max }=0.01$
$(\Delta \rho)_{\max }=0.40$
$(\Delta \rho)_{\min }=-0.31$
$2 \theta_{\max }=148.7^{\circ}$
Measurements: Enraf-Nonius CAD-4 diffractometer
Program system: CAD-4 EXPRESS Software
Structure determination: MolEN
Treatment of hydrogen atoms: difference synthesis and geometric
Refinement: full-matrix least-squares
calculation

${ }^{\dagger}$ To whom correspondence should be addressed.
prepared from the reaction of 2,3-dihydro-3-ethyl-carbazole$4(1 \mathrm{H})$-one $(1.0 \mathrm{~g}, 4.7 \mathrm{mmol})$ and tetrabutylammonium hydrogen sulfate ($0.1 \mathrm{~g}, 0.3 \mathrm{mmol}$) in 30 ml chloroform by a method of Volker. ${ }^{2}$ Later, aqueous sodium hydroxide (50\%) was added and stirred for 15 min . Benzene sulfonylchloride (1 ml) was dropped into this mixture and stirred at 298 K for 3 h and then washed with water. The organic layer was dried with

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters

Atom	x	y	z	$B_{\text {eq }} 1 \AA^{2}$
S1	$0.4386(1)$	$0.24388(8)$	$0.17754(4)$	$4.70(2)$
O1	$0.1776(5)$	$0.5685(2)$	$-0.0859(1)$	$8.22(9)$
O2	$0.5559(3)$	$0.1568(2)$	$0.1681(2)$	$6.28(6)$
O3	$0.4864(3)$	$0.3299(2)$	$0.2317(1)$	$6.18(6)$
C1	$0.3474(6)$	$0.5186(3)$	$0.1409(2)$	$5.52(9)$
C2	$0.2501(8)$	$0.6191(4)$	$0.1093(2)$	$8.4(1)$
C3	$0.2558(7)$	$0.6548(3)$	$0.0343(2)$	$6.7(1)$
C4	$0.2307(5)$	$0.5555(3)$	$-0.0195(2)$	$5.31(9)$
C4a	$0.2816(4)$	$0.4435(3)$	$0.0114(2)$	$3.99(7)$
C5	$0.2441(5)$	$0.3030(3)$	$-0.0997(2)$	$4.94(8)$
C5a	$0.2856(4)$	$0.3362(3)$	$-0.0259(2)$	$4.03(7)$
C6	$0.2628(5)$	$0.1901(4)$	$-0.1159(2)$	$6.0(1)$
C7	$0.3190(5)$	$0.1101(4)$	$-0.0623(2)$	$6.2(1)$
C8	$0.3628(5)$	$0.1413(3)$	$0.0110(2)$	$5.50(9)$
C8a	$0.3464(4)$	$0.2546(3)$	$0.0276(2)$	$4.13(7)$
C9a	$0.3378(4)$	$0.4267(3)$	$0.0852(2)$	$4.04(7)$
N9	$0.3809(3)$	$0.3126(2)$	$0.0972(1)$	$4.32(6)$
C10	$0.1590(6)$	$0.7587(3)$	$0.0032(3)$	$7.0(1)$
C11	$0.1703(8)$	$0.8597(4)$	$0.0518(3)$	$9.3(2)$
C12	$0.2525(4)$	$0.1779(3)$	$0.1892(2)$	$3.86(7)$
C13	$0.1088(4)$	$0.2429(3)$	$0.1853(2)$	$5.03(8)$
C14	$-0.0349(5)$	$0.1918(4)$	$0.1978(2)$	$5.75(9)$
C15	$-0.0344(5)$	$0.0793(4)$	$0.2139(2)$	$5.80(9)$
C16	$0.1074(6)$	$0.0145(4)$	$0.2185(2)$	$6.2(1)$
C17	$0.2553(5)$	$0.0634(3)$	$0.2050(2)$	$4.93(8)$

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}{ }^{*} a_{j}^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.

Table 3 Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

S1-O2	$1.432(3)$	N9-C8a	$1.433(4)$
S1-O3	$1.420(3)$	N9-C9a	$1.392(4)$
S1-N9	$1.674(3)$	C4-C4a	$1.463(5)$
S1-C12	$1.754(3)$	C4a-C5a	$1.439(5)$
C5-C5a	$1.399(4)$	C4a-C9a	$1.365(4)$
O2-S1-O3	$120.1(1)$	C5a-C4a-C9a	$108.9(3)$
O2-S1-N9	$107.5(2)$	C4a-C5a-C8a	$107.1(3)$
O2-S1-C12	$108.5(2)$	C4a-C9a-N9	$108.5(3)$
O3-S1-N9	$106.1(1)$	C8a-N9-C9a	$108.4(2)$
O3-S1-C12	$109.8(2)$	N9-S1-C12	$103.7(1)$

Fig. 2 Molecular structure of the title compound with atomnumbering scheme. The thermal ellipsoids are drawn at the 50% probability level.
magnesium sulfate and evaporated. The residue was crystallized from ethanol.
The results of an X-ray structure determination are given in Tables 1 - 3, and the molecular structure in Fig. 2.
Rings A, B and D are planar, while ring C is not planar with a maximum deviation at $\mathrm{C} 2[-0.238(6) \AA]$. They are also twisted with respect to each other. The dihedral angles between the least-squares planes are $\mathrm{A} / \mathrm{C}=5.4(5), \mathrm{A} / \mathrm{D}=91.3(1), \mathrm{B} / \mathrm{C}=5.3(5)$, $B / D=90.9(1)$ and $C / D=96.0(1)^{\circ}$.

References

1. J. A. Joule, M. Ohashi, and B. Gilbert, Tetrahedron, 1965, 21, 1717.
2. O. I. Volker, Synthesis, 1979, 136.
