Crystal Structure of 1-Cyclopropyl-2-ethyl-5-fluoro-6-(4-methylpiperazin-1-yl)-1H-benzimidazole

Süheyla Özbey,*† Canan Kuş,** and Hakan GöKer**
*Department of Engineering Physics, Hacettepe University, 06532 Beytepe, Ankara, Turkey
**Department of Pharmaceutical Chemistry, Ankara University, 06100 Tandogan, Ankara, Turkey

(Received October 10, 2000; Accepted April 23, 2001)

Benzimidazole derivatives display a wide spectrum of biological activities, ${ }^{1}$ and some of them are used as drugs. ${ }^{2,3}$ In previous studies, ${ }^{4,5}$ we reported on the synthesis and biological evaluation of 1,2,5(6)-trisubstituted benzimidazoles as antihistaminic and antimicrobial agents.
The synthesis of ethyl 1-cyclopropyl-5-fluoro-6-(4-methyl-piperazine-1-yl)-1 H -benzimidazole-2-acetate (1) was performed according to reported methods. ${ }^{6,7}$ 1-Cyclopropyl-2-ethyl-5-fluoro-6-(4-methylpiperazin-1-yl)-1H-benzimidazole (2) was prepared by the reduction of $\mathbf{1}$ with Pd / C in a hydrogen atmosphere (Scheme 1). A suspension of $\mathbf{1}(300 \mathrm{mg}, 0.8 \mathrm{mmol})$ in N, N-dimethylformamide $(0.5 \mathrm{~mL})$ was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}$. After dilution with ethylacetate and filtration, the solution was extracted with water and 10% aqueous NaCl solution. The organic layer was dried and evaporated. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right)$ and recrystallized from isopropanol, yielding 160 mg of 2 . Its structure was assigned by NMR as well as mass and elemental analysis results. The X-ray structure was determined in order to establish the conformation of the molecule.
The crystal and experimental details are summarized in Table 1. The reflection data were collected at $23^{\circ} \mathrm{C}$ using the $\omega-2 \theta$ scan technique by using graphite-monochromated Mo K_{α} radiation $(\lambda=0.71069 \AA)$. A colorless prismatic crystal of 2 with approximate dimensions of $0.24 \times 0.16 \times 0.60 \mathrm{~mm}$ was used for all x-ray experiments. A total of 1933 reflections were measured, 1920 of which were unique. During data collections three intensity control reflections were monitored every 2 h , showing no loss of intensity. The structure was solved by direct methods with $\operatorname{SIR} 92^{8}$ and refined by a full-matrix least-squares method using anisotropic displacement parameters for all nonhydrogen atoms. Hydrogen atoms were placed geometrically $0.95 \AA$ from their parent atoms. For all hydrogen atoms, a riding model was used and displacement parameters were fixed at $1.3 U_{\text {eq }}$ of the parent atoms. The final atomic parameters and

Scheme 1 Synthesis and chemical structures.

[^0]the molecular geometry for the non-hydrogen atoms are given in Tables 2 and 3, respectively. An ORTEP drawing of the compound with atom numbering is shown in Fig. 1.
The structure predicted from chemical and spectral analysis has been confirmed by an x-ray crystallographic analysis. The bond lengths and angles agree with the mean values reported for those analogues compounds. As expected, the benzimidazole ring system is nearly planar. The geometry observed for the piperazine ring shows no significant distortion from a perfect chair. The perpendicular distances of the N 2 and N 4 atoms from the best plane defined by atoms C15, C16, C17, C18 are $-0.671(2)$ and $0.666(3) \AA$, respectively. In terms of the ringpuckering coordinates, the amplitudes and phase magnitudes ${ }^{9}$ are $Q=0.581 \AA, \varphi=101.2$ and $\theta=179.2^{\circ}$. The dihedral angles between the best planes of the benzimidazole and piperazine ring, benzimidazole and cyclopropyl ring are 136.1(1) and

Table 1 Crystal and experimental data

[^1]Table 2 Atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms

Atom	x	y	z	$B_{\text {eq }}$ I ${ }^{2}$
F	$0.7040(3)$	$0.4131(1)$	$0.6097(1)$	$4.75(4)$
N1	$0.6773(4)$	$0.7501(2)$	$0.4344(1)$	$3.33(5)$
N2	$0.6918(4)$	$0.3905(2)$	$0.4363(1)$	$3.32(5)$
N3	$0.6941(4)$	$0.7613(2)$	$0.5781(2)$	$3.82(6)$
N4	$0.6210(4)$	$0.2187(2)$	$0.3412(2)$	$3.99(6)$
C2	$0.6829(4)$	$0.8094(2)$	$0.5055(2)$	$3.57(7)$
C4	$0.6992(4)$	$0.5809(2)$	$0.6033(2)$	$3.70(7)$
C5	$0.6953(4)$	$0.4956(2)$	$0.5615(2)$	$3.44(6)$
C6	$0.6836(4)$	$0.4840(2)$	$0.4717(2)$	$3.09(6)$
C7	$0.6758(4)$	$0.5682(2)$	$0.4232(2)$	$3.41(6)$
C8	$0.6827(4)$	$0.6565(2)$	$0.4646(2)$	$3.13(6)$
C9	$0.6929(4)$	$0.6650(2)$	$0.5539(2)$	$3.34(6)$
C10	$0.6478(4)$	$0.7754(2)$	$0.3460(2)$	$3.67(7)$
C11	$0.7637(5)$	$0.8458(2)$	$0.3018(2)$	$5.01(8)$
C12	$0.7767(5)$	$0.7425(2)$	$0.2804(2)$	$4.67(8)$
C13	$0.6760(5)$	$0.9156(2)$	$0.4986(2)$	$4.34(7)$
C14	$0.6658(6)$	$0.9667(2)$	$0.5835(2)$	$5.58(9)$
C15	$0.5386(5)$	$0.3287(2)$	$0.4560(2)$	$4.14(8)$
C16	$0.5772(5)$	$0.2255(2)$	$0.4315(2)$	$4.18(7)$
C17	$0.7734(5)$	$0.2795(2)$	$0.3222(2)$	$4.03(7)$
C18	$0.7347(4)$	$0.3833(2)$	$0.3451(2)$	$3.66(7)$
C19	$0.6548(6)$	$0.1199(2)$	$0.3160(2)$	$6.2(1)$

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.
$130.5(2)^{\circ}$, respectively. The ethyl group attached to the C2 atom is oriented with the torsion angle of N1-C2-C13-C14 being 174.4(3) ${ }^{\circ}$.
In the molecule, there is an intramolecular hydrogen bond between C15 and F [C15… 2.901, C15-H15 0.944, H15 \cdots F $2.348 \AA$, C15-H15 $\cdots \mathrm{F} ~ 120.4^{\circ}$]. All intermolecular contacts correspond to normal van der Waals interactions.

References

1. F. Janssens, J. Torremans, M. Janssen, R. A. Stokbroekx, M. Luycks, and P. A. J. Janssen, J. Med. Chem., 1985, 28, 1943.
2. K. Ishihara, T. Ichikawa, Y. Komuro, S. Ohara, and K. Hotta, Arzneim Forsch., 1994, 44, 827.
3. G. Piazzesi, L. Morano, and J. C. Rüegg, Arzneim Forsch., 1987, 37, 1141.

Table 3 Selected bond distances and bond angles of nonhydrogen atoms ($\mathrm{A},{ }^{\circ}$)

F	C5	$1.370(3)$	C10	C11	$1.479(5)$	
N1	C10	$1.438(4)$	C10	C12	$1.481(5)$	
N2	C6	$1.410(4)$	C11	C12	$1.474(5)$	
N4	C19	$1.447(4)$	C13	C14	$1.503(5)$	
C2	C13	$1.477(4)$				
						$121.1(3)$
C2	N1	C8	$106.6(2)$	N1	C10	C11
C2	N1	C10	$128.8(2)$	N1	C10	C12
C6	N2	C15	$114.9(2)$	C11	C10	C12
C15	N2	C18	$109.6(2)$	C10	C11	C12
C2	N3	C9	$104.8(2)$	C10	C12	C11
C16	N4	C17	$109.8(2)$	C2	C13	C14
C17	N4	C19	$110.8(3)$	F	C5	C4
N1	C2	N3	$1114.1(2)$	$117.8(2)$		
N1	C2	C13	$122.3(2)$	N2	C6	C7

Fig. 1 ORTEP drawing of the title compound with atom labeling.
4. C. Kuş, H. Göker, G. Ayhan, R. Ertan, N. Altanlar, and A. Akın, Farmaco, 1996, 51, 413.
5. H. Göker, G. Ayhan-Kılcıgil, M. Tunçbilek, C. Kuş, R. Ertan, E. Kendi, S. Özbey, M. Fort, C. Garcia, and A. J. Farré, Heterocycles, 1999, 51, 2561.
6. G. C. Finger and R. E. Oesterling, J. Am. Chem. Soc., 1956, 78, 2593.
7. C. Hubschwerlen, P. Pflieger, J. L. Specklın, K. Gubernator, H. Gmünder, P. Angehrn, and I. Kompis, J. Med. Chem., 1992, 35, 1385.
8. A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi, and G. Polidori, J. Appl. Cryst., 1994, 27, 435.
9. D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354.

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed.

[^1]: Formula: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{~F}$
 Formula weight $=302.39$
 Crystal system: orthorhombic
 Space group: $P 2_{1} 2_{1} 2_{1} \quad Z=4$
 $a=7.511(1) \AA$
 $b=13.867(2) \AA$
 $c=15.581(1) \AA$
 $V=1622.8(3) \AA^{3}$
 $D_{\mathrm{x}}=1.238 \mathrm{~g} / \mathrm{cm}^{3}$
 $\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)=0.08 \mathrm{~mm}^{-1}$
 $T=296 \mathrm{~K}$
 $F(000)=648$
 Crystal dimensions: $0.48 \times 0.20 \times 0.60 \mathrm{~mm}$
 Radiation $=$ graphite monochromated $\mathrm{Mo} \mathrm{K}_{\alpha}(\lambda=0.71069 \AA)$
 $2 \theta_{\text {max }}=57.0^{\circ}$
 Number of reflections measured $=1933$
 No. of reflections used $=1177\left[F_{0}>2.0\left(F_{0}\right)\right]$
 No. of parameters=203
 $R=0.0395$
 $R w=0.0432$
 $(\Delta / \rho)_{\text {max }}=0.13 \mathrm{e}^{\AA^{-3}}$
 $(\Delta \rho)_{\text {min }}=-0.16 \mathrm{e}^{-3}$
 $(\Delta \sigma)_{\max }=0.00$
 Measurement: Enraf Nonius CAD-4 diffractometer
 Program system: CAD-4 EXPRESS Software
 Structure determination: SIR92
 Refinement: full matrix least-squares

