Crystal Structure of $\left\{\left[\mu-N, N^{\prime}\right.\right.$-Bis(salicylidene)-1,3propanediaminatodimethylformamide]zinc(II) $\}$ diiodozinc(II)

Cengiz Arici* ${ }^{* \dagger}$ and Mecit Aksu**
*Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey
**Department of Chemistry, Yozgat Faculty of Sciences, Erciyes University, 66100, Yozgat, Turkey

(Received June 11, 2001; Accepted December 18, 2001)

Zinc(II) ion is the first in a row of essential rare elements for living beings. It has been recognized to be an activator for more than 120 hydrolytic enzymes. ${ }^{1}$
A quantity of ligand [$\mathrm{L}=N, N^{\prime}$-bis(salicylidene)-1,3-propane] $(0.282 \mathrm{~g}, 0.001 \mathrm{~mol})$ was dissolved in 30 ml hot DMF by warming and was mixed with 30 ml hot MeOH containing either $\mathrm{ZnI}_{2}(0.639 \mathrm{~g}, 0.002 \mathrm{~mol})$. The mixtures were set aside for one week. The resulting yellow crystals were filtered with a Büchner funnel and dried in ambient air. The chemical diagram

Fig. 1 Chemical diagram.

Fig. 2 The molecular structure of the title compound, showing 50\% probability displacement ellipsoids.

[^0]of the complex is shown in Fig. 1.
Structures with double oxygen bridges are of interest because they have unusual magnetic moments due to the superexchange interactions over the O atoms. ${ }^{2}$ The crystal structure of the title compound, $\left[\mathrm{ZnI}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]$, consists of a doubly oxygen-bridged homonuclear dimeric complex. The Zn 1 atom has a square-pyramidal environment involving two O and two N atoms of the SALPD ${ }^{2-}\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}, N, N^{\prime}\right.$-bis(salicylidene)-1,3propane] ligand, and an O atom from DMF $\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right.$, dimethyformamide] group. As can be seen in Fig. 2, the coordination around terminal Zn atom is distorted tetrahedral, involving two bridging oxygen atoms and two iodine atoms. The bond lengths of the $\mathrm{Zn}-\mathrm{I}_{1}$ and $\mathrm{Zn}-\mathrm{I}_{2}$ are $2.5373(14)$ and $2.5527(14) \AA$, respectively.
Similar dimeric complexes have been investigated

Table 1 Crystal and experimental data
Formula: $\left[\mathrm{ZnI}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]$
Formula weight $=737.95$
Space group: $P 2_{1} 2_{1} 2_{1}$
Crystal system: orthorhombic $\quad Z=4$
$a=10.5599(12) \AA$
$b=14.9004(11) \AA$
$c=16.1511(12) \AA$
$V=2541.3(4) \AA^{3}$
$D_{\mathrm{x}}=1.929 \mathrm{~g} / \mathrm{cm}^{3}$
$\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)=4.341 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Color = yellow
Radiation Mo K ${ }_{\alpha}(\lambda=0.71073 \AA)$
Crystal size: $0.20 \times 0.15 \times 0.10$
$2 \theta_{\text {max }}=52.58^{\circ}$
No. of reflection $=5650$
No. of reflection used $=2824(I>2 \sigma(I))$
No. of parameters $=272$
$R=0.053$
$R w=0.133$
Goodness-of-fit $=1.09$
$(\Delta \rho)_{\max }=1.40 \mathrm{e}^{-3}(0.92 \AA$ from I2 atom $)$
$(\Delta \rho)_{\min }=-0.64 \mathrm{e}^{-3}$
Measurement: Enraf-Nonius CAD-4
Program system: SHELX97
Structure determination: SHELXS97
Refinement: full matrix least-square SHELXL97
Treatment of hydrogen atoms: geometric calculation

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms

Atom	x	y		z
Zn1	$0.67115(11)$	$0.93771(7)$	$0.12385(7)$	$2.95(3)$
Zn2	$0.38311(10)$	$0.99164(8)$	$0.12118(7)$	$3.16(3)$
I1	$0.22475(8)$	$0.86403(6)$	$0.13130(5)$	$4.85(3)$
I2	$0.29291(10)$	$1.15020(6)$	$0.11108(6)$	$5.57(3)$
O1	$0.5247(7)$	$0.9629(5)$	$0.0445(4)$	$3.24(16)$
O2	$0.5265(7)$	$0.9780(5)$	$0.1996(4)$	$3.38(17)$
O3	$0.7644(7)$	$1.0584(5)$	$0.1196(4)$	$3.72(17)$
N1	$0.7573(9)$	$0.86516)$	$0.0317(5)$	$3.47(2)$
N2	$0.7492(9)$	$0.8725(6)$	$0.2221(6)$	$3.86(2)$
N3	$0.7494(10)$	$1.2097(7)$	$0.1223(7)$	$4.33(2)$
C1	$0.5266(11)$	$0.9612(7)$	$-0.0385(6)$	$3.08(2)$
C2	$0.4280(11)$	$1.0015(9)$	$-0.0843(6)$	$3.55(3)$
C3	$0.4252(14)$	$1.0034(10)$	$-0.1684(7)$	$4.65(3)$
C4	$0.5240(13)$	$0.9591(10)$	$-0.2127(7)$	$4.49(3)$
C5	$0.6185(13)$	$0.9194(8)$	$-0.1708(6)$	$4.18(3)$
C6	$0.6226(11)$	$0.9194(8)$	$-0.0824(6)$	$3.31(2)$
C7	$0.7278(12)$	$0.8722(8)$	$-0.0452(7)$	$3.94(3)$
C8	$0.8692(13)$	$0.8106(9)$	$0.0535(8)$	$4.97(4)$
C9	$0.8544(12)$	$0.7599(8)$	$0.1335(9)$	$4.81(3)$
C10	$0.8614(11)$	$0.8147(8)$	$0.2079(7)$	$4.26(3)$
C11	$0.7153(11)$	$0.8824(8)$	$0.2988(6)$	$3.94(3)$
C12	$0.6124(13)$	$0.9343(7)$	$0.3298(6)$	$3.55(3)$
C13	$0.5213(11)$	$0.9819(7)$	$0.2839(5)$	$3.08(2)$
C14	$0.4291(12)$	$1.0302(10)$	$0.3242(7)$	$4.26(3)$
C15	$0.4187(13)$	$1.0316(12)$	$0.4094(8)$	$5.60(5)$
C16	$0.5061(14)$	$0.9843(11)$	$0.4575(7)$	$4.73(4)$
C17	$0.6046(13)$	$0.9372(8)$	$0.4173(6)$	$4.02(3)$
C18	$0.7016(10)$	$1.1293(7)$	$0.1224(6)$	$3.31(2)$
C19	$0.8843(14)$	$1.2251(9)$	$0.1175(10)$	$5.60(4)$
C20	$0.6661(17)$	$1.2895(8)$	$0.1237(10)$	$6.31(4)$

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i} * a_{j} *\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.
previously. ${ }^{3,4}$ \{ $\left[\mu-N, N^{\prime}\right.$-Bis(salicylidene)-1,3-propanediaminatodimethylformamide]zinc(II) $\}$ diiodozinc(II) $\quad\left[\mathrm{ZnL}^{2} \cdot \mathrm{ZnI}_{2} \cdot \mathrm{DMF}\right]$ and $\left\{\left[\mu-N, N^{\prime}\right.\right.$-bis(salicylidene)-1,3-propanediaminatodimethylformamide]zinc(II) $\}$ dibromozinc(II) $\quad\left[\mathrm{ZnL} \cdot \mathrm{ZnBr}_{2} \cdot \mathrm{DMF}\right]^{3}$ are almost identical. The corresponding bond distances and angles have almost the similar values in these two complexes. The $\mathrm{Zn} \cdots \mathrm{Zn}$ bond distances are 3.1464(16) and 3.1480(7) \AA for the

Table 3 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Zn} 1-\mathrm{Zn} 2$		3.1464(16)		Zn2-I1		$2.5373(14)$	
Zn2-I2		2.5527(14)		Zn2-O1		1.988(7)	
Zni-O1		2.043(7)		Zn2-O2		1.985(7)	
Zn1-O2		2.047 (7)		Zn1-N1		2.052(8)	
Znl-O3		2.051(8)		Zn1-N2		2.034(9)	
O1	Zn1	O2	75.9(2)	O1	Znl	O3	100.4(3)
O1	Zn1	N1	88.7(3)	O2	Znl	O1	97.0(3)
O2	Zn1	N1	156.7(3)	O3	Zn1	N1	103.0(3)
N2	Zn1	O3	104.5(3)	N2	Znl	O 2	88.6(3)
N2	Znl	O1	152.0(4)	N2	Znl	N1	97.7(4)
11	Zn2	I2	116.86(5)	Zn2	O1	Zn1	102.6(3)
O1	Zn2	I2	116.1(2)	O1	Zn2	I1	112.0(2)
O2	Zn2	I2	112.6(2)	O2	Zn 2	12	114.9(2)
O2	Zn2	O1	78.5(3)				

present work and $\mathrm{ZnL} \cdot \mathrm{ZnBr}_{2} \cdot \mathrm{DMF}$, respectively. The crystal and experimental data are given in Table 1, the final atomic parameters are presented in Table 2 and the selected bond distances and angles are in Table 3.

Acknowledgements

The authors wish to acknowledge the purchase of the CAD4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

1. I. Bertini, H. B. Gray, S. J. Lippard, and J. S. Valentine, Bioinorg. Chem., 1994, 37.
2. M. Kato, H. B. Jonassen, and J. C. Fanning, J Chem. Rev., 1964, 64, 99.
3. O. Atakol, H. Nazır, M. Aksu, C. Aricı, F. Ercan, and B. Çiçek, Synth. React. Inorg. Met.-Org. Chem., 2000, 30, 709.
4. O. Atakol, L. Tatar, M. A. Akay, and D. Ülkü, Anal. Sci., 1999, $15,199$.

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed.

