Crystal Structure of [Triaqua(salicylato)(nicotinamide)zinc(II)] Salicylate

Tuncer HöKelek ${ }^{* \dagger}$ and Hacali Necefoğlu**
*Department of Physics, Hacettepe University, 06532 Beytepe-Ankara, Turkey
**Department of Chemistry, Kafkas University, 63100 Kars, Turkey

(Received November 22, 2000; Accepted March 26, 2001)

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to a loss of copper from the body, known as pellagra disease. The nicotinamide derivative, $N, N-$ diethylnicotinamide (DENA), is an important respiratory stimulant. A structure determination of the title compound was undertaken in order to determine the ligand properties of NA and salicylate ligands.
The title compound was prepared from the reaction of $\mathrm{Zn}(2-$ $\left.\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2} \cdot 8\left(\mathrm{H}_{2} \mathrm{O}\right)(1.46 \mathrm{~g}, 3.00 \mathrm{mmol})$ and $\mathrm{NA}(0.18 \mathrm{~g}$, $1.50 \mathrm{mmol})$ in water $(80 \mathrm{ml})$. The mixture was filtered and set aside for crystallization at ambient temperature for a few days.
The results of an X-ray structure determination are given in

Tables 1-4.
The title compound contains a mononuclear Zn (II) complex in which there are three water molecules, one NA ligand and one salicylate ligand. The one salicylate moiety in the compound does not act as a ligand, but is incorporated into the crystal lattice by hydrogen bonds.
Although the zinc atom has five coordination, close contact of the O 5 atom $[\mathrm{Zn} \cdots \mathrm{O} 5=2.687(6) \AA]$ may cause the zinc atom to have six coordination. The five coordination around Zn (II) can be described as a distorted trigonal bipyramid or a distorted square pyramid.
Further information can be obtained by estimating the structural index, $\tau,{ }^{1}$ which represents the relative amount of

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters

Atom	x					y	z	$B_{\text {eq }} / \AA^{2}$
Zn	$0.70613(4)$	$0.0616(1)$	$0.55272(3)$	$3.28(2)$				
O1	$0.7108(2)$	$0.3383(7)$	$0.5528(2)$	$4.0(1)$				
O2	$0.6603(2)$	$0.0747(7)$	$0.6030(2)$	$3.9(1)$				
O3	$0.6890(2)$	$-0.2156(7)$	$0.5540(2)$	$4.1(1)$				
O4	$0.6868(2)$	$0.0430(7)$	$0.4863(2)$	$3.7(1)$				
O5	$0.5796(2)$	$0.1102(8)$	$0.4913(2)$	$4.5(1)$				
O6	$0.4703(2)$	$0.1157(8)$	$0.4208(2)$	$4.8(1)$				
O7	$0.9320(2)$	$-0.1833(9)$	$0.5020(2)$	$5.1(1)$				
O8	$1.0941(3)$	$-0.054(1)$	$0.7165(2)$	$7.6(2)$				
O9	$1.1414(3)$	$-0.1466(8)$	$0.6503(2)$	$5.1(1)$				
O10	$1.2065(3)$	$0.0405(8)$	$0.6235(2)$	$4.8(1)$				
N1	$0.8159(3)$	$0.0337(8)$	$0.5808(2)$	$3.7(1)$				
N2	$1.0350(3)$	$-0.152(1)$	$0.5548(2)$	$4.9(2)$				
C1	$0.6189(3)$	$0.060(1)$	$0.4680(2)$	$3.5(1)$				
C2	$0.5883(3)$	$0.020(1)$	$0.4202(2)$	$3.4(1)$				
C3	$0.6296(3)$	$-0.053(1)$	$0.3942(2)$	$3.9(1)$				
C4	$0.6017(4)$	$-0.092(1)$	$0.3491(2)$	$4.7(2)$				
C5	$0.5303(4)$	$-0.060(1)$	$0.3289(2)$	$5.5(2)$				
C6	$0.4884(4)$	$0.009(1)$	$0.3533(3)$	$5.1(2)$				
C7	$0.5155(3)$	$0.046(1)$	$0.3985(2)$	$4.0(2)$				
C8	$0.8541(3)$	$-0.035(1)$	$0.5551(2)$	$3.5(1)$				
C9	$0.9279(3)$	$-0.052(1)$	$0.5709(2)$	$3.2(1)$				
C10	$0.9600(4)$	$-0.001(1)$	$0.6144(3)$	$4.8(2)$				
C11	$0.9205(4)$	$0.070(1)$	$0.6405(3)$	$5.2(2)$				
C12	$0.8486(4)$	$0.086(1)$	$0.6224(2)$	$4.4(2)$				
C13	$0.9649(3)$	$-0.134(1)$	$0.5393(2)$	$3.5(1)$				
C14	$1.1736(3)$	$0.002(1)$	$0.6515(2)$	$3.8(2)$				
C15	$1.1691(4)$	$0.132(1)$	$0.6865(2)$	$4.2(2)$				
C16	$1.1297(4)$	$0.101(1)$	$0.7168(3)$	$5.5(2)$				
C17	$1.1270(5)$	$0.226(2)$	$0.7481(3)$	$8.0(3)$				
C18	$1.1633(6)$	$0.387(2)$	$0.7507(3)$	$8.4(3)$				
C19	$1.2027(5)$	$0.420(1)$	$0.7214(3)$	$7.2(3)$				
C20	$1.2051(4)$	$0.294(1)$	$0.6899(3)$	$5.1(2)$				

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \Sigma_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.

Table 3 Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Zn}-\mathrm{O} 1$	$2.082(5)$	$\mathrm{Zn}-\mathrm{O} 4$	$1.986(5)$
$\mathrm{Zn}-\mathrm{O} 2$	$2.006(5)$	$\mathrm{Zn}-\mathrm{N} 1$	$2.089(5)$
$\mathrm{Zn}-\mathrm{O} 3$	$2.113(5)$		
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2$	$88.8(2)$	$\mathrm{O} 2-\mathrm{Zn}-\mathrm{O} 4$	$144.0(2)$
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 3$	$173.0(2)$	$\mathrm{O} 2-\mathrm{Zn}-\mathrm{N} 1$	$108.5(2)$
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 4$	$93.8(2)$	$\mathrm{O} 3-\mathrm{Zn}-\mathrm{O} 4$	$88.0(2)$
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{N} 1$	$93.4(2)$	$\mathrm{O} 3-\mathrm{Zn}-\mathrm{N} 1$	$92.5(2)$
$\mathrm{O} 2-\mathrm{Zn}-\mathrm{O} 3$	$85.7(2)$	$\mathrm{O} 4-\mathrm{Zn}-\mathrm{N} 1$	$107.2(2)$

Table 4 Torsion angles (${ }^{\circ}$)

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 4$	$5.97(1.1)$	$\mathrm{O} 4-\mathrm{Zn}-\mathrm{N} 1-\mathrm{C} 12$	$161.6(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 4-\mathrm{Zn}$	$-168.9(5)$	$\mathrm{O} 7-\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 8$	$-0.4(1.1)$
$\mathrm{C} 1-\mathrm{O} 4-\mathrm{Zn}-\mathrm{N} 1$	$-179.9(5)$	$\mathrm{O} 10-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 20$	$-3.5(1.1)$

Fig. 1 Chemical diagram.

Fig. 2 Molecular structure of the title compound with the atomnumbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

The value of τ is 0.48 . The co-ordination geometry of the $\mathrm{Zn}(\mathrm{II})$ atom is therefore best described as a distorted trigonal bipyramidal.
There are intramolecular hydrogen bondings between O6-H6…O5 [O5 $\ldots \mathrm{O} 62.588(7), \mathrm{H} 6 \cdots \mathrm{O} 51.672(12) \AA$ A, O6-H6 $\cdots \mathrm{O} 5$ $\left.141.4(13)^{\circ}\right]$ and $\mathrm{O} 8-\mathrm{H}^{\prime} \ldots \mathrm{O} 9$ [O8...O9 2.571(11), $\mathrm{H}^{\prime} \ldots \mathrm{O} 91.782$ \AA, O8-H8 $\left.8^{\prime} \ldots \mathrm{O} 9133.6^{\circ}\right]$. The configuration around the Zn atom is given by the torsion angles (Table 4). The Zn atom is out of the $\mathrm{C} 1, \mathrm{O} 4, \mathrm{O} 5$ plane by $-0.208(1) \AA$. The dihedral angle between the carboxyl group and the phenyl ring is $6.53(1.04)^{\circ}$.

References

1. S. Uhlenbrock, R. Wegner, and B. Krebs, J. Chem. Soc. Dalton Trans., 1996, 3731.
