Crystal Structure of [N, N^{\prime}-Bis(3,5-dinitrosalicylidene)-1,3-propanediaminato)-bis(3,4-dimethylpyridine)]nickel(II)dioxane Solvate

Cengiz Aricı,** Filiz Ercan,* Orhan Atakol,** and Özlem Başgut**
*Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey
**Department of Chemistry, Ankara University, Tandoğan 06100, Ankara, Turkey

(Received February 22, 2001; Accepted October 1, 2001)

Nitro groups in organic molecules severely change the characteristics, such as the electron density, acidity and solubility. This situation can be observed very clearly in two hydroxy Schiff bases. ${ }^{1,2}$ Due to the electron-withdrawing effect of the nitro group, the electron density of the iminic nitrogen decreases and an unexpected coordination arises. ${ }^{3}$
After a solution of bis- N, N^{\prime}-3,5-dinitrosalicylidene-1,3propanediamine ($0.460 \mathrm{~g}, 1 \mathrm{mmol}$) in hot dioxane (50 ml) was added to 3,4-dimethylpyridine (0.7 ml), a solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.238 \mathrm{~g}, 1 \mathrm{mmol})$ in hot $\mathrm{MeOH}(20 \mathrm{ml})$ was also added. The resulting mixture was set aside for three days, and light-brown crystals formed were filtered off and dried in air. A chemical diagram of the title compound is shown Fig. 1.
In this study, $\left[\mathrm{Ni}\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{10}\right)\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right] \cdot 1 / 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, the coordination polyhedron around the $\mathrm{Ni}^{\mathrm{II}}$ atom, has an irregular octahedral environment with two O and two N atoms from the tetradentate N, N^{\prime}-bis(dinitrosalicylidene)-(3,5-dinitro SALPD ${ }^{2-}$)1,3 -propanediaminato ligand, forming the equatorial plane; the two N atoms from the two monodentate (4,5-dimethylpyridine) ligands in the apical positions. As shown in Fig. 2, the coordination around the metal atom is generally distorted square planar in these complexes. The Ni-N bond distances are $2.062(3) \AA$ and $2.152(3) \AA$ and the Ni-O bond distances range from 2.064(2) to $2.066(2) \AA$. The tetradentate ligand, 3,5-dinitro

Fig. 1 Chemical diagram.

[^0]SALPD $^{2-}$, is not planar. The equatorial plane of the irregular octahedral is defined by atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1$ and N 2 [maximum deviation $0.163(2) \AA]$; the Ni atom is located $0.0554(4) \AA$ from the coordination plane ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1, \mathrm{~N} 2$). Among the cis bond angles, $\mathrm{O} 2-\mathrm{Ni}-\mathrm{N} 4\left[86.82(10)^{\circ}\right.$] has the greatest deviation from 90°. Dioxane solvate has a chair conformation and lies on an inversion center. Atoms O11 and O11 ${ }^{\mathrm{i}}$ [symmetry code: (i) $-x$, $-y,-z]$ of the dioxane lie $+0.5706(13) \AA$ from the plane of the C atoms. The dioxane solvate bridges between the two complexes of the neighbouring unitcell. The $\mathrm{Ni} \cdots \mathrm{O} 11$ distance is 8.092(10)A. The crystal structure of the tridentate ONO Schiff base ligand in the presence of some monodentate ligands was studied previously in our laboratory. ${ }^{4-6}$
The crystal and experimental data are given in Table 1. The final atomic parameters are listed in Table 2. Selected bond distances and angles are given in Table 3.

Table 1 Crystal and experimental data

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms

Atom	x	y	z	$B_{\text {eq }}$
Ni	-0.14154(5)	0.16753(3)	-0.272706(18)	2.46(2)
O1	0.0204(3)	$0.26622(19)$	-0.33273(11)	3.1 (5)
O2	0.0206(3)	0.1388(2)	-0.19471(10)	2.9(5)
O3	0.3550(4)	0.4848(3)	-0.3900(2)	7.6(5)
O4	$0.2709(5)$	0.3867(5)	-0.3038(3)	$10.9(8)$
O5	-0.0899(5)	0.7686(3)	-0.4845(2)	7.4(5)
O6	-0.3253(4)	0.7081(3)	-0.50414(16)	5.5(5)
07	0.2728(4)	0.2520(4)	-0.15562(18)	8.0(6)
O8	$0.3557(4)$	$0.1655(4)$	-0.0624(2)	$7.5(5)$
O9	-0.0952(5)	0.1817(3)	0.11427(14)	6.4(5)
O10	-0.3256(5)	0.1133(3)	0.09643 (14)	6.1(5)
O11*	0.3564(18)	0.4476 (12)	0.0006 (8)	16.4(6)
N1	-0.3040(3)	0.2040(2)	-0.35126(12)	2.8 (3)
N2	-0.3045(3)	0.0710(2)	-0.21202(13)	2.8 (3)
N3	-0.2328(3)	0.3316(2)	-0.22982(13)	2.9 (3)
N4	-0.0026(3)	0.0148(2)	-0.31203(13)	3.0 (3)
N5	0.2413(4)	0.4426(3)	-0.3538(2)	5.2(4)
N6	-0.1877(5)	0.6930(3)	-0.47859(17)	4.6(4)
N7	0.2451 (4)	0.1984(3)	-0.10265(18)	4.7(3)
N8	-0.1882(5)	0.1453(3)	0.07696(15)	4.3(3)
C1	-0.0305(4)	0.3627(3)	-0.36561(15)	2.9(2)
C2	0.0731(4)	0.4576(3)	-0.37926(18)	3.5(3)
C3	0.0228(5)	0.5631(3)	-0.41517(19)	3.8 (3)
C4	-0.1359(4)	0.5815(3)	-0.44082(17)	3.5 (3)
C5	-0.2405(4)	0.4931(3)	-0.43246(16)	3.2(3)
C6	-0.1929(4)	0.3866 (3)	-0.39575(15)	2.8(2)
C7	-0.3088(4)	0.2973(3)	-0.39179(15)	2.9(3)
C8	-0.4314(5)	0.1242(3)	-0.35919(17)	3.6 (4)
C9	-0.5330(4)	0.0944(3)	-0.29381(18)	3.8(5)
C10	-0.4314(5)	0.0126(3)	-0.24240(18)	3.8(4)
C11	-0.3073(4)	0.0615(3)	-0.14769(15)	2.9(3)
C12	-0.1911(4)	0.1048(3)	-0.10625(15)	2.8(3)
C13	-0.2376(4)	0.1048(3)	-0.03783(16)	3.1(3)
C14	-0.1328(4)	0.1402(3)	$0.00627(15)$	3.3 (3)
C15	0.0256 (5)	0.1692(3)	-0.01558(17)	$3.5(4)$
C16	0.0754(4)	0.1680(3)	-0.08282(16)	3.2(3)
C17	-0.0287(4)	0.1388 (3)	-0.13314(15)	2.7 (3)
C18	-0.1161(5)	0.3963(3)	-0.2134(2)	3.9(4)
C19	-0.1520(6)	0.5103(4)	-0.1953(3)	5.3(4)
C20	-0.3198(7)	0.5623(4)	-0.1928(3)	5.8(6)
C21	-0.4394(6)	0.4949(4)	-0.2089(2)	5.5(5)
C22	-0.3933(4)	0.3810(3)	-0.22662(19)	3.9(4)
C23	-0.0089(9)	0.5754(6)	-0.1778(5)	10.9(8)
C24	-0.3695(11)	0.6892(5)	-0.1748(4)	10.9(8)
C25	$0.0578(5)$	-0.0752(3)	-0.26875(18)	3.7(4)
C26	0.1855(5)	-0.1603(3)	-0.2864(2)	4.3(3)
C27	0.2572(5)	-0.1577(3)	-0.3512(2)	$4.0(4)$
C28	0.1929 (5)	-0.0684(3)	-0.39772(18)	3.7(3)
C29	0.0640(5)	0.0158(3)	-0.37502(16)	$3.4(4)$
C30	$0.4100(7)$	-0.2464(4)	-0.3703(3)	6.7(6)
C31	0.2588 (7)	-0.0582(4)	-0.4705(2)	5.8(6)
C32*	$0.3593(17)$	0.5669(13)	-0.0192(8)	10.6(8)
C33*	0.4801(15)	0.6065(11)	0.0230(6)	8.2(8)

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.

* These atoms are refined isotropically and the multiplicity is 0.5 .

Acknowledgements

The authors wish to acknowledge the purchase of the CAD4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of in Turkey.

Fig. 2 Molecular structure of the title compound, showing 30\% probability displacement ellipsoids. The H atoms have been omitted for clarity.

Table 3 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Ni}-\mathrm{Ol}$		2.064(2)		$\mathrm{Ni}-\mathrm{O} 2$		$2.066(2)$	
Ni-N1		$2.079(3)$		Ni-N2		2.062(3)	
$\mathrm{Ni}-\mathrm{N} 3$		2.152(3)		Ni-N4		$2.123(4)$	
O11-C32		1.385(9)		C32-C33		2.463(9)	
N2	Ni	O 2	87.21(9)	N1	Ni	N4	94.99(10)
O1	Ni	O2	92.64(9)	N2	Ni	N3	94.19(10)
N1	Ni	N1	94.25(10)	O1	Ni	N3	85.02(10)
O1	Ni	N1	85.87(9)	O2	Ni	N3	85.02(9)
O2	Ni	N1	177.59(10)	N1	Ni	N3	92.96(10)
N2	Ni	N4	93.50(10)	N4	Ni	N3	168.49(10)

Acta Crystallogr., 1996, C52, 2682.

2. K. Ogawa and T. Fujiwara, Chem. Lett., 1999, 657.
3. M. N. Tahir, D. Ülkü, H. Nazır, and O. Atakol, Acta Crystallogr., 1997, C53, 181.
4. M. N. Tahir, D. Ülkü, O. Atakol, and Ö. Başğut, Acta Crystallogr., 1998, C54, 623.
5. O. Atakol, A. Kenar, F. Ercan, M. Sarı, and R. Yağbasan, Acta Crystallogr., 1996, C52, 1881.
6. R. Sakamato, M. Ohba, N. Fukita, K. Takahashi, H. Okawa, and L. K. Thompson, Bull. Chem. Soc. Jpn., 1998, 71, 2365.

References

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed.

