Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: FR1008). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

References

Barclay, G. A. \& Hoskins, B. F. (1965). J. Chem. Soc. pp. 1979-1991. Butcher, R. J. \& Sinn, E. (1975). Inorg. Chem. 15, 1604-1608.
Enraf-Nonius (1993). CAD-4 Express Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kato, M., Jonassen, H. B. \& Fanning, J. (1964). Chem. Rev. pp. 99128.

Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
Tahir, N., Ülkü, D., Atakol, O. \& Akay, A. (1996). Acta Cryst. C52, 2676-2678.
Ülkü, D., Tahir, N., Atakol, O. \& Tastekin, M. (1997). Acta Cryst. In preparation.

Acta Cryst. (1997). C53, 181-183

Bis\{2-[(3-aminopropyl)iminomethyl]-4,6-dinitrophenolato- $\left.O, N, N^{\prime}\right\}$ nickel(II)

M. Nawaz Tahrr, ${ }^{a}$ Dinçer Ülkü, ${ }^{a *}$ Hasan Nazir ${ }^{b}$ and Orhan Atakol ${ }^{b}$
${ }^{a}$ Department of Engineering Physics, Hacettepe University, Beytepe, 06532 Ankara, Turkey, and ${ }^{b}$ Department of Chemistry, Faculty of Science, University of Ankara, Besevler, 06100 Ankara, Turkey. E-mail: dulku@eti.cc.hun. edu.tr

(Received 17 July 1996; accepted 17 October 1996)

Abstract

The title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{5}\right)_{2}\right]$, contains asymmetric Schiff base ligands. The coordination sphere around the Ni atom is a distorted octahedron, with an average $\mathrm{Ni}-\mathrm{O}$ distance of $2.072(2) \AA$ and $\mathrm{Ni}-\mathrm{N}$ distances ranging from 2.059 (2) to 2.084 (3) \AA. Bond angles at the Ni atom have values between 83.80 (9) and $96.93(9)^{\circ}$. The structure is stabilized through an intermolecular hydrogen-bonding network.

Comment

In general, the Schiff base reaction of aldehydes with symmetrical amino groups such as ethylenediamine, 1,3-
diaminopropane or 1,2 -diaminobenzene involves both amino groups. Schiff bases prepared with this type of diamine are symmetrical. Nickel complexes of the diamine Schiff bases generally have square-planar coordination (Akhtar \& Drew, 1982; Manfredotti \& Guastini, 1983; Padha, Seshasayee, Ramalingam \& Aravamudan, 1985; Drew, Prasad \& Sharma, 1985; Elerman, Kabak \& Atakol, 1993). To the best of our knowledge, the title compound, (I), is the first asymmetric Schiff basenickel(II) complex obtained by a template reaction using 3,5-dinitrosalicylaldehyde and 1,3-diaminopropane.

(I)

The slightly distorted octahedral coordination around the Ni atom involves two nitrogen and one oxygen donor from each of the two ligands (Fig. 1), with imine and amine N atoms both taking part in coordination. The phenolic O atoms are mutually cis , with equal bond lengths [2.072 (1) and $2.072(2) \AA$], with respect to the nickel centre. The apical $\mathrm{Ni}-\mathrm{N} 1$ and $\mathrm{Ni}-\mathrm{N} 3$ bond lengths of 2.059 (2) and 2.064 (2) \AA are slightly shorter than the $\mathrm{Ni}-\mathrm{N} 2$ and $\mathrm{Ni}-\mathrm{N} 4$ bond lengths of 2.084 (3) and 2.077 (2) \AA in the equatorial plane. Different $\mathrm{Ni}-\mathrm{N}$ distances are expected, since these bonds are influenced by the nature of the N -donor atom and also by the chelate rings (Curtis, 1979). Unequal $\mathrm{Ni}-\mathrm{N}$ distances

Fig. 1. ORTEPII (Johnson, 1976) drawing of $\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{5}\right)_{2}\right]$ with the atomic numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
were also observed in our previously reported squareplanar coordinated Schiff base-nickel(II) complexes (Ülkü, Tahir, Uçar \& Atakol, 1996; Tahir, Ülkü, Atakol \& Kenar, 1996). Within the coordination octahedron, the maximum deviation of the bond angles from 90° is 6.93 (9) ${ }^{\text {. }}$. The maximum displacement of the Ni atom from the centre of the octahedron is 0.1120 (4) \AA in the direction of the O 2 atom. Each ligand provides two chelating rings to the coordination sphere. The two benzene rings make a dihedral angle of $15.2(3)^{\circ}$ with one another. Details of the hydrogen-bonding geometry are given in Table 3: although numerous intermolecular hydrogen bonds appear to stabilize the asymmetric molecule, it seems likely that the shortest of these are the most significant and the other interactions are a consequence of these. The IR spectrum of the complex is in agreement with the molecular structure; observed stretching frequencies (cm^{-1}) are $\mathrm{C}=\mathrm{N} 1646, \mathrm{~N}-$ H 3361 and 3310 , and $\mathrm{N}-\mathrm{O} 1335$ and 1300 .

Experimental

1,3-Diaminopropane ($0.074 \mathrm{~g}, 1 \mathrm{mmol}$) was added to a solution of 3,5 -dinitrosalicylaldehyde $(0.212 \mathrm{~g}, 1 \mathrm{mmol})$ in hot MeCN $(50 \mathrm{ml})$ and the mixture heated to boiling point. A solution of $\left[\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right] .4 \mathrm{H}_{2} \mathrm{O}(2.490 \mathrm{~g}, 1 \mathrm{mmol})$ in hot methanol $(30 \mathrm{ml})$ was added and the mixture was set aside for a week at room temperature. The precipitated crystals were filtered off and found to be suitable for X-ray data collection.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{5}\right)_{2}\right]$
$M_{r}=593.156$
Triclinic
$P \overline{1}$
$a=9.144$ (1) \AA 。
$b=11.087$ (2) \AA
$c=13.241$ (1) \AA
$\alpha=91.64(2)^{\circ}$
$\beta=102.62(1)^{\circ}$
$\gamma=112.09(2)^{\circ}$
$V=1204.6(4) \AA^{3}$
$Z=2$
$D_{x}=1.635 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scans
(MolEN; Fair, 1990)
$T_{\text {min }}=0.844, T_{\text {max }}=0.877$
4229 measured reflections
4027 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.45-18.08^{\circ}$
$\mu=0.877 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$
Dark red

2980 reflections with
$I>3 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.01^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=0 \rightarrow 15$
3 standard reflections frequency: 120 min intensity decay: -0.9%

Refinement

Refinement on F
$R=0.031$
$(\Delta / \sigma)_{\text {max }}=0.0003$
$w R=0.038$
$S=1.22$
2916 reflections
352 parameters
H atoms: see below
$\Delta \rho_{\text {max }}=0.30$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.10 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray
Crystallography (Vol. IV)

Weighting scheme: see below

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Ni}-\mathrm{O} 1$	$2.072(2)$	$\mathrm{Ni}-\mathrm{N} 2$	$2.084(3)$
$\mathrm{Ni}-\mathrm{O} 2$	$2.072(1)$	$\mathrm{Ni}-\mathrm{N} 3$	$2.064(2)$
$\mathrm{Ni}-\mathrm{N} 1$	$2.059(2)$	$\mathrm{Ni}-\mathrm{N} 4$	$2.077(2)$
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{O} 2$	$92.99(7)$	$\mathrm{O} 2-\mathrm{Ni}-\mathrm{N} 4$	$178.56(9)$
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{N} 1$	$85.74(9)$	$\mathrm{Nl}-\mathrm{Ni}-\mathrm{N} 2$	$94.0(1)$
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{N} 2$	$177.03(7)$	$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 3$	$166.0(1)$
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{N} 3$	$83.80(9)$	$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 4$	$93.20(8)$
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{N} 4$	$86.04(9)$	$\mathrm{N} 2-\mathrm{Ni}-\mathrm{N} 3$	$96.0(1)$
$\mathrm{O} 2-\mathrm{Ni}-\mathrm{N} \mathrm{l}$	$85.66(7)$	$\mathrm{N} 2-\mathrm{Ni}-\mathrm{N} 4$	$96.93(9)$
$\mathrm{O} 2-\mathrm{Ni}-\mathrm{N} 2$	$84.04(8)$	$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 4$	$95.33(9)$
$\mathrm{O} 2-\mathrm{Ni}-\mathrm{N} 3$	$85.62(7)$		

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	D. . A	$D-\mathrm{H} \cdots \cdot$
$\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{Ol} 0^{1}$	0.820	2.65 (3)	3.451 (3)	164 (3)
N4- $\mathrm{H} 41 \cdots \mathrm{OS}^{1}$	0.813	2.35 (3)	3.088 (4)	151 (2)
N4-H42 . $\mathrm{O}^{\text {² }}$	0.877	2.54 (3)	3.296 (4)	144 (2)
C8-H81. . O7 ${ }^{\text {¹ }}$	0.950	2.77	3.453 (4)	129
C8-H82 . . $\mathrm{O}^{\text {¹ }}$	0.950	2.73	3.326 (3)	121
C9—H92 . $\mathrm{O}^{\text {(11 }}$	0.950	2.59	3.418 (5)	144
C18-H182 . ${ }^{\text {O }}{ }^{1} 0^{1}$	0.950	2.60	3.479 (5)	154
C19-H191...O9 ${ }^{\text {a }}$	0.950	2.59	3.166 (5)	119
$\mathrm{C} 20-\mathrm{H} 2 \mathrm{O} 1 \cdots \mathrm{Ol} 0^{\prime}$	0.950	2.58	3.475 (5)	157

Symmetry codes: (i) $x, y-1, z$; (ii) $-x, 1-y,-z$; (iii) $1-x, 1-y,-z$; (iv) $-x, 1-y, 1-z$.

The weighting scheme used was $w^{\prime}=4 F^{2} /\left[\sigma(I)^{2}+\left(p F^{2}\right)^{2}\right]$, if $F^{2}<$ cutoff $\times\left[\sigma(I)^{2}+\left(p F^{2}\right)^{2}\right]^{1 / 2}$, then the reflection is omitted ($p=0.04$ and cutoff $=3.0$). All non-H atoms were refined with anisotropic displacement parameters. H atoms on C atoms were placed geometrically $0.95 \AA$ from their parent atoms and the H atoms of N 2 and N 4 were refined for a few cycles. For all H atoms, a riding model was used with $B_{\mathrm{eq}}(\mathrm{H})=$ $1.3 B_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Data collection: CAD-4 Express (Enraf-Nonius, 1993). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SIMPEL in MolEN. Program(s) used to refine structure: LSFM in MolEN. Molecular graphics: ORTEPII (Johnson, 1976) in MolEN. Software used to prepare material for publication: MolEN.

The authors acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

[^0]
References

Akhtar, F. \& Drew, M. G. B. (1982). Acta Cryst. B38, 1149-1154.
Curtis, N. F. (1979). Coordination Chemistry of Macrocyclic Compounds, edited by G. A. Melson, pp. 219-344. New York: Plenum.
Drew, M. G. B., Prasad, R. N. \& Sharma, R. P. (1985). Acta Cryst. C41, 1755-1758.
Elerman, Y., Kabak, M. \& Atakol, O. (1993). Acta Cryst. C49, 19051906.

Enraf-Nonius (1993). CAD-4 Express Software. Version 1.1. EnrafNonius, Delft. The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Manfredotti, A. G. \& Guastini, C. (1983). Acta Cryst. C39, 863-865.
Padha, A., Seshasayee, M., Ramalingam, K. \& Aravamudan, G. (1985). Acta Cryst. C41, 1169-1171.

Tahir, M. N., Ülkü, D., Atakol, O. \& Kenar, A. (1996). Acta Cryst. C52, 2178-2180.
Ülkü, D., Tahir, M. N., Uçar, G. \& Atakol, O. (1996). Acta Cryst. C52, 1884-1885.

Acta Cryst. (1997). C53, 183-185

\{2-[(2,3-Dimethylphenyl)amino]benzoato$\left.O: O^{\prime}\right\}$ trimethyltin(IV)

M. Nawaz Tahir, ${ }^{a}$ Dinçer Ülkü, ${ }^{a *}$ Muhammad Danish, ${ }^{b}$ Saqib Ali, ${ }^{b}$ Amin Badshah ${ }^{b}$ and Muhammad Mazhar ${ }^{b}$
${ }^{a}$ Hacettepe University, Department of Engineering Physics, Beytepe 06532, Ankara, Turkey, and ${ }^{\text {b }}$ Quaid-i-Azam University, Department of Chemistry, Islamabad 45320, Pakistan.E-mail: dulku@eti.cc.hun.edu.tr

(Received 19 July 1996; accepted 21 October 1996)

Abstract

In the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}\right)\left(\mathrm{CH}_{3}\right)_{3}\right.$], the Sn atom has a distorted trigonal bipyramidal coordination. The three bonds to methyl groups in the equatorial plane have almost the same values [$\mathrm{Sn}-\mathrm{C}$ range 2.106 (3)-2.113 (4) \AA], but the $\mathrm{Sn}-\mathrm{O}$ bonds in the axial positions involving one carboxyl O atom [Snl O1 2.153 (2) Å] and another symmetry-related carboxyl O atom in the trans position [Sn1-O2 2.495 (2) A] have quite different values. The $\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$ angle is $173.60(8)^{\circ}$. Each trimethyltin group bridges two neighbouring 2-[(2,3 -dimethylphenyl)amino]benzoate ligands via carboxyl moieties to form polymeric chains.

Comment

Organotin carboxylates containing a six-membered ring with a heteroatom either as part of the ring skele-
ton or as an additional functional group, have various structural possibilities. Such variations depend on the nature of the heteroatom. If the heteroatom is a potential donor ligand, like N, O or S , it increases the coordination number of the Sn atom, either intramolecularly or by forming an intermolecular interaction with the Sn atom of a symmetry-related molecule. The known examples with nitrogen as the heteroatom are: dimethylchlorotin 2-pyridinecarboxylate (Nowell, Brooks, Beech \& Hill, 1983), dicarboxylatotetraorganodistannoxane $\left\{\left[{ }^{n} \mathrm{Bu}_{2} \mathrm{Sn}^{2}\left(\mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]_{2} \mathrm{O}\right\}_{2}$ (Parulekar et al., 1989) and three $\mathrm{Me}_{2} \mathrm{Sn}$ (chelate) $)_{2}$ compounds bearing fivemembered chelate rings (Lockhart \& Davison, 1987). In the last case, when the heteroatom is away from the CO_{2} group (either included or attached to the ring), the intermolecular interactions result in the formation of an infinite polymeric chain, at least in the solid state, e.g. trimethylstannyl 2-furancarboxylate (Tiekink, Sandhu \& Verma, 1989). In the present case, however, the heteroatom (in the form of an amino group) connects two sixmembered rings, namely the benzoate and xylyl groups, but is itself located on the C atom adjacent to the CO_{2} group. The structure of the title compound, (I), was determined in order to study the influence of the N atom on the coordination number of the Sn atom.

(I)

As can be seen from Fig. 1, the central fivecoordinated Sn atom has a distorted trigonal bipyramidal environment. The three methyl groups are located in the basal plane and the more electronegative O atoms from symmetry-related carboxylate ligands occupy the axial positions. The Sn atom is 0.153 (2) \AA out of the equatorial plane towards the more strongly bound O 1 atom. The three Sn - C distances are equal within experimental error $[2.106(3), 2.113$ (4) and $2.109(3) \AA$ A $]$ and are also in agreement with the values reported for related compounds. The $\mathrm{Sn}-\mathrm{O}$ bond lengths are significantly different [$\mathrm{Sn} 1-\mathrm{O} 12.153$ (2) and $\mathrm{Sn} 1-$ O2 2.495 (2) Å]. The C-O bonds within the carboxyl group also have different lengths. The longer C4O 1 bond $[1.292(4) \AA$ A and the shorter $\mathrm{Sn}-\mathrm{O} 1$ bond [2.153(2) \AA] share the same O atom and vice versa.

Acta Crystallographica Section C ISSN 0108-2701 © 1997

[^0]: Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: BM1107). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

