metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(3-chlorobenzoato- $\kappa^2 O, O'$)bis-(nicotinamide- κN)copper(II)

Nihat Bozkurt,^a Nefise Dilek,^b Nagihan Çaylak Delibaş,^c Hacali Necefoğlu^a and Tuncer Hökelek^d*

^aKafkas University, Department of Chemistry, 63100 Kars, Turkey, ^bAksaray University, Department of Physics, 68100, Aksaray, Turkey, ^cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and ^dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 9 May 2013; accepted 28 May 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.083; data-to-parameter ratio = 14.8.

The molecule of the title Cu^{II} complex, $[Cu(C_7H_4ClO_2)_2(C_6H_6N_2O)_2]$, contains two 3-chlorobenzoate (CB) and two nicotinamide (NA) ligands; the CB act as bidentate ligands, while the NA are monodentate ligands. The resulting CuN₂O₄ coordination polyhedron is a considerably distorted octahedron. The dihedral angles between the carboxylate groups and the adjacent benzene rings are 17.92 (12) and 24.69 (16)°, while the two benzene rings and the two pyridine rings are oriented at dihedral angles of 52.20 (8) and 1.56 (6)°. In the crystal, N-H···N and C-H···O hydrogen bonds link the molecules into a three-dimensional network. The π - π contact between the benzene rings [centroid-centroid distance = 3.982 (2) Å] may further stabilize the crystal structure.

Related literature

For niacin, see: Krishnamachari (1974). For the nicotinic acid derivative *N*,*N*-diethylnicotinamide, see: Bigoli *et al.* (1972). For related structures, see: Greenaway *et al.* (1984); Hökelek & Necefoğlu (1996); Hökelek *et al.* (1996); Hökelek, Dal *et al.* (2009); Hökelek, Yılmaz *et al.* (2009); Necefoğlu *et al.* (2011); Sertçelik *et al.* (2013).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_7H_4ClO_2)_2(C_6H_6N_2O)_2 \end{bmatrix} & \gamma = 77.115 (3)^{\circ} \\ M_r = 618.91 & V = 1334.30 (6) Å^3 \\ Triclinic, P\overline{1} & Z = 2 \\ a = 9.6614 (2) Å & Mo K\alpha radiation \\ b = 12.5429 (3) Å & \mu = 1.07 \text{ mm}^{-1} \\ c = 12.8728 (3) Å & T = 296 \text{ K} \\ \alpha = 61.598 (2)^{\circ} & 0.35 \times 0.20 \times 0.15 \text{ mm} \\ \beta = 87.386 (3)^{\circ} \\ \end{bmatrix}$

Data collection

```
Bruker SMART BREEZE CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
T<sub>min</sub> = 0.774, T<sub>max</sub> = 0.852
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$wR(F^2) = 0.083$	independent and constrained
S = 1.06	refinement
5434 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
368 parameters	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$
117 restraints	

19053 measured reflections

 $R_{\rm int} = 0.022$

5434 independent reflections

4970 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N2 - H2A \cdots O2^{i} \\ N2 - H2B \cdots O6^{ii} \\ N4 - H4A \cdots O5^{i} \\ N4 - H4B \cdots O4^{ii} \\ C19 - H19 \cdots O1^{iii} \\ C21 - H21 \cdots O5^{i} \\ C24 - H24 \cdots O3^{iv} \end{array}$	0.80 (2) 0.84 (3) 0.83 (3) 0.81 (2) 0.93 0.93 0.93	2.12 (2) 2.02 (3) 2.01 (3) 2.05 (2) 2.45 2.56 2.59	2.896 (2) 2.790 (2) 2.817 (2) 2.836 (2) 3.100 (2) 3.416 (2) 3.475 (3)	164 (2) 153 (2) 164 (2) 162 (3) 127 154 158

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 2, -z + 1; (iii) -x + 1, -y + 2, -z; (iv) -x, -y + 2, -z.

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* for Windows (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

The authors are indebted to Aksaray University and the Science and Technology Application and Research Center of Aksaray University, Aksaray, Turkey, for the use of X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2404).

References

- Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651–m652.
- Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473. Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.
- Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1416-m1417.
- Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.
- Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E**67**, m887–m888.
- Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290-m291.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, m356–m357 [https://doi.org/10.1107/S1600536813014694] Bis(3-chlorobenzoato-κ²O,O')bis(nicotinamide-κN)copper(II)

Nihat Bozkurt, Nefise Dilek, Nagihan Çaylak Delibaş, Hacali Necefoğlu and Tuncer Hökelek

S1. Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative *N*,*N*–diethylnicotinamide, an important respiratory stimulant (Bigoli *et al.*, 1972), the title compound was synthesized and its crystal structure is reported herein.

In the monomeric title complex, **I**, the Cu^{II} ion is surrounded by two 3–chlorobenzoate (*CB*) and two (NA) ligands. The *CB* act as bidentate ligands, while the NA are monodentate ligands. The structures of similar complexes of Zn(II) and Cd(II) ions, $[Zn_2(C_{10}H_{14}N_2O)_2(C_7H_5O_3)_4]^2H_2O$, **II**, (Hökelek & Necefoğlu, 1996), $[Zn(C_9H_{10}NO_2)_2(C_6H_6N_2O)^2H_2O]$, **III**, (Hökelek, Dal *et al.*, 2009) and $[Cd(C_8H_5O_3)_2(C_6H_6N_2O)_2]^2H_2O$, **IV**, (Hökelek, Yılmaz *et al.*, 2009) have also been determined.

In the title compound (Fig. 1), the Cu atom is displaced out of the least–squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by 0.1556 (2)Å and -0.0577 (2)Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 17.92 (12)° and 24.69 (16)°, respectively, while those between rings A, B, C (N1/C15—C19) and D (N3/C21—C25) are A/B = 52.20 (8)°, A/C = 85.61 (7)°, A/D = 84.86 (7)°, B/C = 71.49 (7)°, B/D = 69.95 (6)° and C/D = 1.56 (6)°. The two four–membered rings, (Cu1/O1/O2/C1) and (Cu1/O3/O4/C8), are oriented at a dihedral angle of 12.07 (7)°.

In **I**, the O1–Cu1–O2 and O3–Cu1–O4 angles are 59.76 (5)° and 55.08 (5)°, respectively. The corresponding O–*M*–O (where *M* is a metal) angles are 58.3 (3)° in **II**, 60.03 (6)° in **III**, 52.91 (4) and 53.96 (4)° in **IV**, 53.50 (14)° in $[Cu_2(C_8H_5O_3)_4(C_6H_6N_2O)_4]$, **V**, (Sertçelik *et al.*, 2013), 57.75 (2)° in $[Cu(C_7H_4FO_2)_2(C_7H_5FO_2)(C_6H_6N_2O)_2]$, **VI**, (Necefoğlu *et al.*, 2011), 58.3 (3)° in $[Cu(C_7H_5O_2)_2(C_{10}H_{14}N_2O)_2]$, **VII**, (Hökelek *et al.*, 1996) and 55.2 (1)° in $[Cu(Asp)_2(Py)_2]$, where *Asp* is acetylsalicylate and *Py* is pyridine, **VIII**, (Greenaway *et al.*, 1984).

In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a three–dimensional network, in which they may be effective in the stabilization of the structure. The π - π contact between the benzene rings, Cg2··· $Cg2^{i}$, where Cg2 is the centroid of the ring B (C9–C14) may further stabilize the structure, with Cg···Cg distance of 3.982 (2)Å. Symmetry code: (i) -*x*, 1-*y*, -*z*.

S2. Experimental

The title compound was prepared by the reaction of $CuSO_45H_2O$ (1.25 g, 5 mmol) in H_2O (50 ml) and NA (1.22 g, 10 mmol) in H_2O (50 ml) with sodium 3–chlorobenzoate (1.79 g, 10 mmol) in H_2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

S3. Refinement

Atoms H2A, H2B, H4A and H4B (NH_2 groups) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93Å for aromatic H atoms, and constrained to ride on

their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with the atom–numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Bis(3-chlorobenzoato- $\kappa^2 O, O'$)bis(nicotinamide- κN)copper(II)

Crystal data

$[Cu(C_7H_4ClO_2)_2(C_6H_6N_2O)_2]$	Z = 2
$M_r = 618.91$	F(000) = 630
Triclinic, P1	$D_{\rm x} = 1.541 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.6614 (2) Å	Cell parameters from 9977 reflections
b = 12.5429 (3) Å	$\theta = 2.2 - 28.3^{\circ}$
c = 12.8728 (3) Å	$\mu = 1.07 \text{ mm}^{-1}$
$\alpha = 61.598 \ (2)^{\circ}$	T = 296 K
$\beta = 87.386 \ (3)^{\circ}$	Block, blue
$\gamma = 77.115 \ (3)^{\circ}$	$0.35 \times 0.20 \times 0.15 \text{ mm}$
V = 1334.30 (6) Å ³	
Data collection	
Bruker SMART BREEZE CCD	19053 measured reflections
diffractometer	5434 independent reflections
Radiation source: fine-focus sealed tube	4970 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
φ and ω scans	$\theta_{\rm max} = 26.4^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2012)	$k = -15 \rightarrow 15$
$T_{\min} = 0.774, \ T_{\max} = 0.852$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.083$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
5434 reflections	and constrained refinement
368 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 0.6228P]$
117 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.43 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.27888 (2)	1.000999 (18)	0.199774 (17)	0.02922 (8)
Cl1	0.80542 (9)	0.43210 (7)	0.58781 (9)	0.0953 (3)
Cl2	-0.34732 (8)	1.57612 (7)	-0.04862 (10)	0.1008 (3)
01	0.38881 (17)	0.84400 (13)	0.15270 (12)	0.0491 (4)
O2	0.39807 (13)	0.83886 (11)	0.32503 (11)	0.0345 (3)
O3	0.18430 (14)	1.14369 (12)	0.05257 (11)	0.0375 (3)
O4	0.0977 (2)	1.19856 (14)	0.18577 (12)	0.0570 (4)
05	0.76794 (14)	1.14536 (16)	0.40191 (15)	0.0545 (4)
O6	-0.25440 (15)	0.82581 (19)	0.51564 (15)	0.0641 (5)
N1	0.43976 (16)	1.08071 (13)	0.18924 (12)	0.0318 (3)
N2	0.54419 (18)	1.16359 (17)	0.45497 (15)	0.0398 (4)
H2A	0.565 (2)	1.176 (2)	0.507 (2)	0.040 (6)*
H2B	0.458 (3)	1.172 (2)	0.440 (2)	0.050 (6)*
N3	0.10420 (15)	0.93169 (13)	0.24499 (12)	0.0315 (3)
N4	-0.04948 (19)	0.83277 (19)	0.58345 (16)	0.0435 (4)
H4A	0.034 (3)	0.841 (2)	0.574 (2)	0.048 (6)*
H4B	-0.079 (3)	0.818 (2)	0.648 (2)	0.058 (7)*
C1	0.4330 (2)	0.78886 (17)	0.25815 (16)	0.0354 (4)
C2	0.5297 (2)	0.66138 (17)	0.31005 (18)	0.0411 (4)
C3	0.6115 (2)	0.61181 (18)	0.4143 (2)	0.0448 (5)
H3	0.6067	0.6566	0.4553	0.054*
C4	0.7010 (2)	0.4944 (2)	0.4575 (2)	0.0551 (6)
C5	0.7073 (3)	0.4258 (2)	0.3993 (3)	0.0701 (7)
Н5	0.7664	0.3465	0.4298	0.084*

C6	0 6252 (4)	0.4758(2)	0 2957 (3)	0 0791 (9)
H6	0.6283	0.4298	0.2560	0.095*
C7	0.5381 (3)	0.5933 (2)	0.2300	0.099
е <i>т</i> Н7	0.4848	0.6272	0.1785	0.077*
C8	0.1053 (2)	1 21991 (17)	0.08210 (16)	0.077(4)
C9	0.1033(2) 0.0182(2)	1.21991(17) 1.33707(17)	-0.01605(17)	0.0391(4)
C10	-0.1053(2)	1 39805 (18)	0.01003(17)	0.0391(4) 0.0487(5)
H10	-0.1309	1 3691	0.0875	0.058*
C11	-0.1900(2)	1.5022 (2)	-0.0812(2)	0.0582 (6)
C12	-0.1515(3)	1.5022(2) 1.5492(2)	-0.1967(2)	0.0562(0)
H12	-0.2008	1.5492 (2)	-0.2573	0.0000 (7)
C13	-0.0263(3)	1.01)2	-0.2205(2)	0.0640 (6)
H13	0.0203 (3)	1.5236	-0.2975	0.0040(0)
C14	0.0021 0.0587 (3)	1 3845 (2)	-0.13122(18)	0.077 0.0498 (5)
H14	0.1426	1 3448	-0.1486	0.0498(9)
C15	0.1420	1.09464 (16)	0.1400 0.28005(14)	0.000
H15	0.4711	1 0749	0.3442	0.037*
C16	0.59731 (17)	1 13714 (15)	0.3442 0.28251 (15)	0.037 0.0297(3)
C10 C17	0.59751(17) 0.6804(2)	1.15714 (15)	0.28251(15) 0.18655(18)	0.0297(3)
H17	0.7637	1 1014	0.1866	0.0412 (4)
C18	0.7037 0.6388(2)	1.1566 (2)	0.00122 (18)	0.0474(5)
H18	0.6915	1.1780	0.0248	0.0474(3)
C19	0.0713 0.5179(2)	1 11393 (19)	0.0248	0.037
H10	0.3179 (2)	1 1080	0.0302	0.0405 (4)
C20	0.4377 (18)	1 14888 (16)	0.38547 (16)	0.049
C21	0.04242(18)	0.90891 (16)	0.34942(15)	0.0304(4)
H21	0.09121 (18)	0.90091 (10)	0.34942 (13)	0.037*
C22	-0.07235(18)	0.9225	0.4014 0.38352 (15)	0.037 0.0319(4)
C22	-0.1438(2)	0.80597(10) 0.8479(2)	0.30332(13) 0.30439(18)	0.0317(4)
H23	-0.2282	0.8210	0.30432 (10)	0.053*
C24	-0.0884(2)	0.8210 0.8701 (2)	0.19695 (19)	0.033
U24 U24	-0.1344	0.8701 (2)	0.1/0/0 (17)	0.0494 (3)
C25	0.1377 0.0353 (2)	0.03/7	0.1732 0 17077 (17)	0.039
U25	0.0333 (2)	0.0252	0.17077 (17)	0.0408 (4)
C26	-0.13250(10)	0.3232 0.84043 (18)	0.0907	0.049
020	0.13239 (19)	0.04045 (18)	0.50057 (17)	0.0300 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03384 (13)	0.03311 (12)	0.02251 (11)	-0.01037 (9)	0.00167 (8)	-0.01354 (9)
Cl1	0.0746 (5)	0.0701 (4)	0.1137 (7)	0.0100 (4)	-0.0438 (5)	-0.0290 (4)
Cl2	0.0536 (4)	0.0683 (4)	0.1427 (8)	0.0039 (3)	0.0142 (4)	-0.0287 (5)
O1	0.0689 (10)	0.0471 (8)	0.0279 (7)	-0.0023 (7)	0.0038 (6)	-0.0200 (6)
O2	0.0412 (7)	0.0358 (6)	0.0285 (6)	-0.0055 (5)	0.0001 (5)	-0.0180 (5)
O3	0.0451 (7)	0.0373 (6)	0.0279 (6)	-0.0085 (6)	-0.0017 (5)	-0.0138 (5)
O4	0.0919 (12)	0.0461 (8)	0.0290 (7)	-0.0090 (8)	0.0040 (7)	-0.0175 (6)
O5	0.0295 (7)	0.0882 (11)	0.0697 (10)	-0.0180 (7)	0.0031 (7)	-0.0548 (9)
06	0.0336 (8)	0.1099 (14)	0.0543 (10)	-0.0324 (8)	0.0127 (7)	-0.0376 (10)

supporting information

N1	0.0362 (7)	0.0352 (7)	0.0256 (7)	-0.0118 (6)	0.0024 (6)	-0.0144 (6)
N2	0.0334 (9)	0.0622 (11)	0.0368 (9)	-0.0152 (7)	0.0031 (7)	-0.0322 (8)
N3	0.0344 (7)	0.0346 (7)	0.0266 (7)	-0.0093 (6)	0.0006 (6)	-0.0148 (6)
N4	0.0315 (9)	0.0711 (12)	0.0331 (9)	-0.0195 (8)	0.0094 (7)	-0.0262 (8)
C1	0.0398 (9)	0.0360 (9)	0.0327 (9)	-0.0111 (7)	0.0080 (7)	-0.0177 (7)
C2	0.0451 (11)	0.0366 (9)	0.0419 (10)	-0.0110 (8)	0.0123 (8)	-0.0192 (8)
C3	0.0408 (10)	0.0402 (10)	0.0536 (12)	-0.0091 (8)	0.0040 (9)	-0.0226 (9)
C4	0.0400 (11)	0.0442 (11)	0.0685 (15)	-0.0062 (9)	0.0014 (10)	-0.0181 (11)
C5	0.0697 (16)	0.0405 (12)	0.088 (2)	0.0011 (11)	0.0127 (14)	-0.0276 (13)
C6	0.114 (2)	0.0505 (14)	0.0786 (19)	-0.0030 (15)	0.0115 (17)	-0.0426 (14)
C7	0.0931 (19)	0.0480 (12)	0.0525 (14)	-0.0053 (12)	0.0044 (13)	-0.0300 (11)
C8	0.0476 (10)	0.0350 (9)	0.0313 (9)	-0.0130 (8)	0.0014 (8)	-0.0148 (7)
C9	0.0482 (11)	0.0327 (9)	0.0353 (10)	-0.0133 (8)	0.0000 (8)	-0.0134 (8)
C10	0.0497 (12)	0.0373 (10)	0.0529 (12)	-0.0149 (9)	0.0078 (9)	-0.0148 (9)
C11	0.0430 (12)	0.0389 (11)	0.0801 (17)	-0.0089 (9)	-0.0009 (11)	-0.0183 (11)
C12	0.0701 (16)	0.0426 (12)	0.0636 (16)	-0.0101 (11)	-0.0198 (13)	-0.0054 (11)
C13	0.0832 (18)	0.0534 (13)	0.0370 (12)	-0.0156 (12)	-0.0041 (11)	-0.0065 (10)
C14	0.0611 (13)	0.0457 (11)	0.0361 (10)	-0.0123 (10)	0.0024 (9)	-0.0144 (9)
C15	0.0330 (8)	0.0365 (8)	0.0243 (8)	-0.0123 (7)	0.0053 (6)	-0.0143 (7)
C16	0.0282 (8)	0.0321 (8)	0.0296 (8)	-0.0081 (6)	0.0031 (6)	-0.0150 (7)
C17	0.0364 (10)	0.0513 (11)	0.0419 (10)	-0.0188 (8)	0.0117 (8)	-0.0239 (9)
C18	0.0488 (11)	0.0652 (13)	0.0333 (10)	-0.0234 (10)	0.0183 (8)	-0.0245 (10)
C19	0.0464 (11)	0.0525 (11)	0.0277 (9)	-0.0152 (9)	0.0073 (8)	-0.0219 (8)
C20	0.0296 (8)	0.0374 (9)	0.0374 (9)	-0.0096 (7)	0.0001 (7)	-0.0203 (8)
C21	0.0312 (8)	0.0375 (9)	0.0276 (8)	-0.0104 (7)	0.0000 (6)	-0.0174 (7)
C22	0.0286 (8)	0.0351 (8)	0.0315 (9)	-0.0074 (7)	-0.0009 (7)	-0.0151 (7)
C23	0.0392 (10)	0.0553 (12)	0.0450 (11)	-0.0207 (9)	-0.0010 (8)	-0.0244 (10)
C24	0.0547 (12)	0.0657 (13)	0.0436 (11)	-0.0237 (11)	-0.0028 (9)	-0.0339 (10)
C25	0.0492 (11)	0.0500 (11)	0.0302 (9)	-0.0150 (9)	0.0018 (8)	-0.0231 (8)
C26	0.0279 (9)	0.0484 (10)	0.0370 (10)	-0.0114 (8)	0.0050 (7)	-0.0188 (8)

Geometric parameters (Å, °)

Cu1—O1	2.3487 (14)	С6—Н6	0.9300
Cu1—O2	2.0168 (12)	C7—C6	1.376 (4)
Cu1—O3	1.9574 (12)	С7—Н7	0.9300
Cu1—O4	2.6280 (12)	C8—C9	1.498 (3)
Cu1—N1	1.9947 (14)	C9—C10	1.385 (3)
Cu1—N3	2.0065 (14)	C9—C14	1.384 (3)
Cu1—C1	2.5090 (18)	C10—C11	1.379 (3)
Cl1—C4	1.731 (3)	C10—H10	0.9300
Cl2—C11	1.740 (3)	C11—C12	1.382 (4)
01—C1	1.237 (2)	C12—H12	0.9300
O2—C1	1.281 (2)	C13—C12	1.369 (4)
O3—C8	1.279 (2)	C13—H13	0.9300
O4—C8	1.232 (2)	C14—C13	1.385 (3)
O5—C20	1.228 (2)	C14—H14	0.9300
O6—C26	1.224 (2)	С15—Н15	0.9300

N1—C15	1.339 (2)	C16—C15	1.385 (2)
N1—C19	1.338 (2)	C16—C17	1.384 (2)
N2—C20	1.318 (2)	C16—C20	1.495 (2)
N2—H2A	0.79(2)	C17—C18	1 373 (3)
N2—H2B	0.84(3)	C17—H17	0.9300
N3 C21	1 337 (2)	C18 H18	0.9300
N3 C25	1.337(2) 1.338(2)	C_{10} C_{18}	1,370(3)
N4 C26	1.336(2) 1.321(2)	C10 H10	1.379(3)
	1.321(2)		0.9300
N4—H4A	0.85(3)	C21—C22	1.380 (2)
N4—H4B	0.81 (3)		0.9300
	1.500 (3)	C_{22} C_{23}	1.385 (3)
C2—C3	1.377 (3)	C22—C26	1.500 (3)
C2—C7	1.388 (3)	C23—C24	1.382 (3)
C3—C4	1.387 (3)	С23—Н23	0.9300
С3—Н3	0.9300	C24—H24	0.9300
C4—C5	1.376 (4)	C25—C24	1.371 (3)
C5—C6	1.371 (4)	С25—Н25	0.9300
С5—Н5	0.9300		
O1—Cu1—C1	29.28 (5)	O4—C8—O3	122.57 (17)
O2—Cu1—O1	59.76 (5)	O4—C8—C9	120.80 (18)
O2—Cu1—C1	30.48 (5)	C10—C9—C8	118.89 (18)
O3—Cu1—O1	106.81 (5)	C14—C9—C8	121.26 (19)
O3—Cu1—O2	166.26 (5)	C14—C9—C10	119.85 (19)
03 - Cu1 - 04	55.08(5)	C9-C10-H10	120.4
$O_3 - C_{u1} - N_1$	91.50(6)	C_{11} C_{10} C_{9}	1192(2)
$O_3 C_{\rm H} 1 N_3$	93.10(6)		120.4
$O_3 = Cu_1 = O_3$	136.00 (6)	C_{11} C_{11} C_{12}	120.4
V_{3}	130.00(0)	C10 - C11 - C12	119.0(2)
NI-Cul-Ol	100.98(0)	C10-C11-C12	121.3(2)
NI = CuI = O2	88.03 (5)		119.71 (19)
NI—CuI—N3	164.90 (6)	CII—CI2—HI2	120.5
NI—Cul—Cl	95.33 (6)	C13—C12—C11	119.0 (2)
N3—Cu1—O1	91.43 (6)	C13—C12—H12	120.5
N3—Cu1—O2	90.26 (5)	C12—C13—C14	120.7 (2)
N3—Cu1—C1	91.32 (6)	C12—C13—H13	119.6
C1—O1—Cu1	82.56 (11)	C14—C13—H13	119.6
C1—O2—Cu1	96.52 (11)	C9—C14—C13	119.8 (2)
C8—O3—Cu1	106.27 (11)	C9—C14—H14	120.1
C15—N1—Cu1	120.40 (11)	C13—C14—H14	120.1
C19—N1—Cu1	120.98 (12)	N1-C15-C16	122.74 (16)
C19—N1—C15	118.47 (15)	N1—C15—H15	118.6
C20—N2—H2A	119.4 (16)	C16—C15—H15	118.6
C20—N2—H2B	121.7 (17)	C15—C16—C20	122.86 (15)
H2A—N2—H2B	118 (2)	C17—C16—C15	117.97 (16)
C21—N3—Cu1	120.20 (11)	C17—C16—C20	119.14 (16)
C21—N3—C25	118.42 (15)	C16—C17—H17	120.3
C25—N3—Cu1	121.34 (13)	C18 - C17 - C16	119.43 (17)
C26—N4—H4A	122.8 (16)	C18—C17—H17	120.3

C26—N4—H4B	119.5 (18)	C17—C18—C19	119.23 (17)
H4A—N4—H4B	118 (2)	C17—C18—H18	120.4
O1—C1—Cu1	68.16 (10)	C19—C18—H18	120.4
O1—C1—O2	121.15 (17)	N1—C19—C18	122.04 (17)
O1—C1—C2	120.21 (17)	N1—C19—H19	119.0
O2—C1—Cu1	53.00 (9)	С18—С19—Н19	119.0
O2—C1—C2	118.64 (16)	O5—C20—N2	122.54 (17)
C2—C1—Cu1	171.55 (14)	O5—C20—C16	119.44 (16)
C3—C2—C1	121.54 (18)	N2—C20—C16	118.02 (15)
C3—C2—C7	119.6 (2)	N3—C21—C22	122.83 (15)
C7—C2—C1	118.8 (2)	N3—C21—H21	118.6
C2—C3—C4	119.3 (2)	C22—C21—H21	118.6
С2—С3—Н3	120.4	C21—C22—C26	123.15 (15)
С4—С3—Н3	120.4	C23—C22—C21	117.85 (17)
C3—C4—C11	119.5 (2)	C23—C22—C26	118.99 (16)
C5—C4—C11	119.32 (19)	С22—С23—Н23	120.3
C5—C4—C3	121.1 (2)	C24—C23—C22	119.42 (18)
C4—C5—H5	120.4	C24—C23—H23	120.3
C6—C5—C4	119.1 (2)	C23—C24—H24	120.5
С6—С5—Н5	120.4	C25—C24—C23	118.95 (17)
C5—C6—C7	120.6 (3)	C25—C24—H24	120.5
С5—С6—Н6	119.7	N3—C25—C24	122.50 (18)
С7—С6—Н6	119.7	N3—C25—H25	118.8
С2—С7—Н7	119.9	C24—C25—H25	118.8
C6—C7—C2	120.2 (3)	O6—C26—N4	122.87 (19)
С6—С7—Н7	119.9	O6—C26—C22	119.36 (17)
O3—C8—C9	116.61 (16)	N4—C26—C22	117.76 (16)
O2—Cu1—O1—C1	-0.68 (11)	Cu1—N3—C21—C22	177.25 (13)
O3—Cu1—O1—C1	176.18 (11)	C25—N3—C21—C22	-0.5 (3)
N1—Cu1—O1—C1	81.22 (12)	Cu1—N3—C25—C24	-176.47 (16)
N3—Cu1—O1—C1	-90.14 (12)	C21—N3—C25—C24	1.3 (3)
O1—Cu1—O2—C1	0.66 (10)	O1—C1—C2—C3	161.79 (19)
O3—Cu1—O2—C1	-12.1 (3)	O1—C1—C2—C7	-17.1 (3)
N1—Cu1—O2—C1	-102.89 (11)	O2—C1—C2—C3	-18.0 (3)
N3—Cu1—O2—C1	92.17 (11)	O2—C1—C2—C7	163.1 (2)
O1—Cu1—O3—C8	169.20 (11)	C1—C2—C3—C4	-178.91 (18)
O2—Cu1—O3—C8	-179.33 (19)	C7—C2—C3—C4	0.0 (3)
N1—Cu1—O3—C8	-88.86 (12)	C1—C2—C7—C6	-179.5 (2)
N3—Cu1—O3—C8	76.76 (12)	C3—C2—C7—C6	1.5 (4)
C1—Cu1—O3—C8	171.88 (11)	C2—C3—C4—Cl1	179.33 (16)
O1—Cu1—N1—C15	-126.37 (13)	C2—C3—C4—C5	-1.3 (3)
O1—Cu1—N1—C19	49.23 (15)	Cl1—C4—C5—C6	-179.5 (2)
O2—Cu1—N1—C15	-67.55 (14)	C3—C4—C5—C6	1.1 (4)
O2—Cu1—N1—C19	108.05 (15)	C4—C5—C6—C7	0.4 (5)
O3—Cu1—N1—C15	126.19 (14)	C2—C7—C6—C5	-1.7 (5)
O3—Cu1—N1—C19	-58.21 (15)	O3—C8—C9—C10	155.12 (18)
N3—Cu1—N1—C15	18.4 (3)	O3—C8—C9—C14	-24.5 (3)

N3—Cu1—N1—C19	-165.97 (19)	O4—C8—C9—C10	-23.5 (3)
C1—Cu1—N1—C15	-97.33 (14)	O4—C8—C9—C14	156.8 (2)
C1—Cu1—N1—C19	78.27 (15)	C8-C9-C10-C11	-176.52 (18)
O1—Cu1—N3—C21	128.70 (13)	C14—C9—C10—C11	3.1 (3)
O1—Cu1—N3—C25	-53.57 (15)	C8—C9—C14—C13	178.2 (2)
O2—Cu1—N3—C21	68.94 (13)	C10-C9-C14-C13	-1.4 (3)
O2—Cu1—N3—C25	-113.33 (15)	C9—C10—C11—Cl2	178.44 (17)
O3—Cu1—N3—C21	-124.39 (13)	C9-C10-C11-C12	-2.3 (3)
O3—Cu1—N3—C25	53.34 (15)	Cl2—C11—C12—C13	178.9 (2)
N1—Cu1—N3—C21	-16.8 (3)	C10-C11-C12-C13	-0.4 (4)
N1—Cu1—N3—C25	160.9 (2)	C14—C13—C12—C11	2.1 (4)
C1—Cu1—N3—C21	99.41 (13)	C9—C14—C13—C12	-1.2 (4)
C1—Cu1—N3—C25	-82.86 (15)	C17—C16—C15—N1	-0.1 (3)
O1—Cu1—C1—O2	-178.84 (18)	C20-C16-C15-N1	-177.97 (16)
O2—Cu1—C1—O1	178.84 (18)	C15—C16—C17—C18	2.7 (3)
O3—Cu1—C1—O1	-5.26 (15)	C20-C16-C17-C18	-179.32 (18)
O3—Cu1—C1—O2	175.90 (9)	C15—C16—C20—O5	155.40 (18)
N1—Cu1—C1—O1	-102.99 (12)	C15-C16-C20-N2	-25.1 (3)
N1—Cu1—C1—O2	78.17 (11)	C17—C16—C20—O5	-22.5 (3)
N3—Cu1—C1—O1	90.58 (12)	C17—C16—C20—N2	157.06 (18)
N3—Cu1—C1—O2	-88.26 (11)	C16—C17—C18—C19	-2.6 (3)
Cu1—O1—C1—O2	1.09 (17)	N1-C19-C18-C17	-0.2 (3)
Cu1—O1—C1—C2	-178.70 (16)	N3—C21—C22—C23	-0.8 (3)
Cu1—O2—C1—O1	-1.3 (2)	N3—C21—C22—C26	-179.89 (16)
Cu1—O2—C1—C2	178.53 (14)	C21—C22—C23—C24	1.5 (3)
Cu1—O3—C8—O4	-0.1 (2)	C26—C22—C23—C24	-179.42 (19)
Cu1—O3—C8—C9	-178.74 (13)	C21—C22—C26—O6	166.2 (2)
Cu1—N1—C15—C16	173.02 (13)	C21—C22—C26—N4	-14.9 (3)
C19—N1—C15—C16	-2.7 (3)	C23—C22—C26—O6	-12.9 (3)
Cu1—N1—C19—C18	-172.84 (16)	C23—C22—C26—N4	166.07 (19)
C15—N1—C19—C18	2.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N2—H2A···O2 ⁱ	0.80 (2)	2.12 (2)	2.896 (2)	164 (2)
N2—H2 B ···O6 ⁱⁱ	0.84 (3)	2.02 (3)	2.790 (2)	153 (2)
N4—H4 A ···O5 ⁱ	0.83 (3)	2.01 (3)	2.817 (2)	164 (2)
N4—H4 <i>B</i> ···O4 ⁱⁱ	0.81 (2)	2.05 (2)	2.836 (2)	162 (3)
C19—H19…O1 ⁱⁱⁱ	0.93	2.45	3.100 (2)	127
C21—H21···O5 ⁱ	0.93	2.56	3.416 (2)	154
C24—H24…O3 ^{iv}	0.93	2.59	3.475 (3)	158

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z; (iv) -x, -y+2, -z.