### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Aquabis(4-fluorobenzoato- $\kappa O$ )bis-(nicotinamide- $\kappa N^1$ )copper(II) nicotinamide hemisolvate trihydrate

#### Hacali Necefoğlu,<sup>a</sup> Füreya Elif Özbek,<sup>a</sup> Vijdan Öztürk,<sup>a</sup> Vedat Adıgüzel<sup>a</sup> and Tuncer Hökelek<sup>b</sup>\*

<sup>a</sup>Kafkas University, Department of Chemistry, 36100 Kars, Turkey, and <sup>b</sup>Hacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 11 November 2011; accepted 9 December 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.063; wR factor = 0.160; data-to-parameter ratio = 16.9.

The asymmetric unit of the title compound,  $[Cu(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)]\cdot 0.5C_6H_6N_2O\cdot 3H_2O$ , contains two aquabis(4-fluorobenzoato)bis(nicotinamide)copper(II) molecules, one nicotinamide solvent molecule and six water molecules. The Cu<sup>II</sup> ion is coordinated by two O atoms from two 4-fluorobenzoate ligands, two N atoms from two nicotinamide ligands and one water O atom in a distorted square-pyramidal geometry. In the crystal,  $O-H\cdots O$ ,  $O-H\cdots N$  and  $N-H\cdots O$  hydrogen bonds consolidate the crystal packing, which also exhibits  $\pi$ - $\pi$  interactions between the aromatic rings [centroid–centroid distances 3.692 (2)–3.794 (2) Å].

#### **Related literature**

For general background to niacin, see: Krishnamachari (1974). For general background to the nicotinic acid derivative *N*,*N*-diethylnicotinamide, see: Bigoli *et al.* (1972). For related structures, see: Hökelek *et al.* (1996, 2009*a*,*b*); Hökelek & Necefoğlu (1998, 2007); Necefoğlu *et al.* (2011). For bondlength data, see: Allen *et al.* (1987).



#### **Experimental**

Crystal data [Cu(C<sub>7</sub>H<sub>4</sub>FO<sub>2</sub>)<sub>2</sub>(C<sub>6</sub>H<sub>6</sub>N<sub>2</sub>O)<sub>2</sub>-(H<sub>2</sub>O)]·0.5C<sub>6</sub>H<sub>6</sub>N<sub>2</sub>O·3H<sub>2</sub>O

 $M_r = 719.13$ Monoclinic,  $P2_1/c$ 

| a = 18.4108 (4)  Å              |
|---------------------------------|
| b = 14.8908 (3) Å               |
| c = 22.8569 (5) Å               |
| $\beta = 105.247 \ (3)^{\circ}$ |
| $V = 6045.7 (2) \text{ Å}^3$    |

#### Data collection

Bruker Kappa APEXII CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)  $T_{min} = 0.825, T_{max} = 0.858$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$   $wR(F^2) = 0.160$  S = 1.1215210 reflections 900 parameters 34 restraints

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$            | D-H                                    | $H \cdot \cdot \cdot A$ | $D \cdots A$                     | $D - \mathbf{H} \cdot \cdot \cdot A$  |
|----------------------------------------|----------------------------------------|-------------------------|----------------------------------|---------------------------------------|
| $N2-H2A\cdotsO18$                      | 0.86                                   | 2.10                    | 2.929 (6)                        | 163                                   |
| $N2 - H2B \cdots O4^{i}$               | 0.86                                   | 2.13                    | 2.914 (5)                        | 150                                   |
| $N4 - H4A \cdots O18^{ii}$             | 0.86                                   | 2.27                    | 3.090 (6)                        | 160                                   |
| $N4 - H4B \cdots O4^{iii}$             | 0.86                                   | 2.12                    | 2.909 (5)                        | 152                                   |
| $N6-H6A\cdotsO21^{iv}$                 | 0.86                                   | 2.00                    | 2.849 (5)                        | 169                                   |
| $N6-H6B\cdots O9^{v}$                  | 0.86                                   | 2.18                    | 2.925 (4)                        | 145                                   |
| N8-H8A···O16                           | 0.86                                   | 2.44                    | 3.285 (5)                        | 167                                   |
| $N8 - H8B \cdot \cdot \cdot O9^{vi}$   | 0.86                                   | 2.07                    | 2.890 (4)                        | 160                                   |
| $N10-H10A\cdots O7$                    | 0.86                                   | 2.20                    | 3.031 (5)                        | 163                                   |
| $N10-H10B\cdotsO12^{vii}$              | 0.86                                   | 2.10                    | 2.897 (5)                        | 155                                   |
| $O7 - H71 \cdots O13^{vii}$            | 0.92 (3)                               | 1.85 (3)                | 2.762 (4)                        | 174 (3)                               |
| $O7 - H72 \cdot \cdot \cdot O14^{vii}$ | 0.81 (5)                               | 2.02 (5)                | 2.824 (4)                        | 174 (3)                               |
| O14−H141···N9                          | 0.93 (4)                               | 1.93 (4)                | 2.812 (4)                        | 158 (4)                               |
| $D14 - H142 \cdots O5^{viii}$          | 0.93 (3)                               | 1.85 (3)                | 2.782 (4)                        | 177 (5)                               |
| O16−H161···O19                         | 0.60 (4)                               | 2.26 (3)                | 2.845 (6)                        | 164 (8)                               |
| $O17 - H172 \cdots O6^{ix}$            | 0.73 (5)                               | 2.21 (5)                | 2.887 (5)                        | 156 (5)                               |
| $O18 - H182 \cdot \cdot \cdot O17^{x}$ | 0.63 (6)                               | 2.30 (6)                | 2.839 (6)                        | 145 (7)                               |
| O19−H191···O13                         | 0.74 (5)                               | 2.06 (5)                | 2.800 (6)                        | 172 (5)                               |
| $O20 - H201 \cdots O18^{viii}$         | 0.77                                   | 2.07                    | 2.611 (6)                        | 128                                   |
| O20−H202···O15                         | 0.64                                   | 2.14                    | 2.710 (5)                        | 149                                   |
| $O21 - H211 \cdots O2$                 | 0.91 (3)                               | 1.91 (3)                | 2.807 (4)                        | 169 (4)                               |
| $O21 - H212 \cdots O16^{xi}$           | 0.89 (4)                               | 1.88 (5)                | 2.759 (5)                        | 168 (5)                               |
| Symmetry codes: (i)                    | $x, y - \frac{1}{2}, -z + \frac{1}{2}$ | (ii) $x, y + 1$ ,       | $z;$ (iii) $-x, y + \frac{1}{2}$ | $\frac{1}{2}, -z + \frac{1}{2};$ (iv) |

Z = 8

Mo  $K\alpha$  radiation

 $0.24 \times 0.20 \times 0.19 \text{ mm}$ 

103729 measured reflections

15210 independent reflections

11162 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of independent and constrained

 $\mu = 0.80 \text{ mm}^{-1}$ 

T = 100 K

 $R_{\rm int}=0.060$ 

refinement

 $\Delta \rho_{\rm max} = 1.27$  e Å<sup>-3</sup>

 $\Delta \rho_{\rm min}$  = -1.16 e Å<sup>-3</sup>

Symmetry codes: (i)  $-x, y - \frac{1}{2}, -z + \frac{1}{2};$  (ii) x, y + 1, z; (iii)  $-x, y + \frac{1}{2}, -z + \frac{1}{2};$  (iv) -x, -y + 1, -z + 1; (v)  $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2};$  (vi)  $x, -y + \frac{1}{2}, z - \frac{1}{2};$  (vii)  $x, -y + \frac{1}{2}, z + \frac{1}{2};$  (ix) -x + 1, -y + 1, -z + 1; (x) -x + 1, -y, -z + 1; (x) -x + 1, -y, -z + 1; (x) -x - y, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for use of the diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 106 T472).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5200).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
- Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.
- Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.
- Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.
- Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.
- Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.
- Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.
- Necefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). *Acta Cryst.* E**67**, m619–m620.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2012). E68, m52-m53 [doi:10.1107/S1600536811053116]

# Aquabis(4-fluorobenzoato- $\kappa O$ )bis(nicotinamide- $\kappa N^1$ )copper(II) nicotinamide hemisolvate trihydrate

### H. Necefoglu, F. E. Özbek, V. Öztürk, V. Adigüzel and T. Hökelek

#### Comment

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative *N*,*N*-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli *et al.*, 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title mononuclear  $Cu^{II}$  complex (Fig. 1) contains two  $[Cu(PFB)_2(NA)_2(H_2O)]$  molecules (PFB = 4-fluorobenzoato), one NA solvent molecule and six crystalline water molecules, all ligands coordinating in a monodentate manner. The crystal structures of similar omplexes of  $Cu^{II}$ ,  $Co^{II}$ ,  $Ni^{II}$ ,  $Mn^{II}$  and  $Zn^{II}$  ions,  $[Cu(C_7H_5O_2)_2(C_{10}H_{14}N_2O)_2]$  (Hökelek *et al.*, 1996),  $[Co(C_6H_6N_2O)_2(C_7H_4NO_4)_2(H_2O)_2]$  (Hökelek & Necefoğlu, 1998),  $[Co(C_9H_9O_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$  (Necefoğlu *et al.*, 2011),  $[Ni(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$  (Hökelek *et al.*, 2009*a*),  $[Mn(C_9H_{10}NO_2)_2(H_2O)_4]$ .2H<sub>2</sub>O (Hökelek & Necefoğlu, 2007) and  $[Zn(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$  (Hökelek *et al.*, 2009*b*) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the Cu<sup>II</sup> atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title compound, each Cu<sup>II</sup> ion is coordinated by two O atoms from two PFB ligands, two N atoms from two NA ligands and one Owater atom in a distorted square-pyramidal geometry. The near equalities of the C1-O1 [1.281 (4) Å], C1—O2 [1.240 (4) Å], C8—O3 [1.282 (5) Å], C8—O4 [1.249 (5) Å] and C27—O8 [1.278 (4) Å], C27—O9 [1.249 (4) Å], C34—O10 [1.285 (5) Å], C34—O11 [1.245 (5) Å], bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Cu—O bond lengths are between 1.933 (3)-1.945 (3) Å (for benzoate oxygens) and 2.445 (3) Å and 2.479 (3) Å (for water oxygens), and the Cu–N bond lengths are between 2.021 (3)-2.044 (3) Å, close to standard values (Allen et al., 1987). The intramolecular N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1) link the water molecules to the nicotinamide ligands, carboxylate groups and to the uncoordianated water molecules. The Cu1 and Cu2 atoms are displaced out of the mean-planes of the adjacent carboxylate groups (O1/C1/O2), (O3/C8/O4) and (O8/C27/O9), (O10/C34/O11) by 0.1551 (4), -0.1910 (4) and -0.2732 (4), 0.4498 (4) Å, respectively. The dihedral angles between the planar carboxylate groups (O1/C1/O2), (O3/C8/O4) and (O8/C27/O9), (O10/C34/O11) and the adjacent benzene rings A (C2-C7), B (C9-C14) and E (C28-C33), F (C35-C40) are 11.34 (18), 14.87 (24) and 11.72 (18), 17.02 (21) °. The benzene and pyridine C (N1/C15–C19), D (N3/C21–C25) and G (N5/C41–C45), H(N7/ C47—C51) rings are oriented at dihedral angles of A/B = 33.20(13), A/C = 83.21(13), A/D = 67.15(13), B/C = 64.04(13), B/D = 79.75 (13), C/D = 16.65 (11) and E/F = 45.16 (13), E/G = 76.73 (12), E/H = 58.51 (12), F/G = 58.75 (12), F/H = 58.75 (12), F76.90 (13), G/H = 18.23 (12) °.

In the crystal, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network. There also exist two weak C—H··· $\pi$  interactions (Table 1) and the  $\pi$ - $\pi$  contacts between the benzene and benzene rings and between the pyridine and pyridine rings Cg1—Cg1<sup>i</sup>, Cg1—Cg2<sup>ii</sup>, Cg2—Cg2<sup>iii</sup>, Cg5—Cg5<sup>iv</sup>, Cg5—Cg6<sup>ii</sup>,

Cg6—Cg6<sup>v</sup> and Cg3—Cg4<sup>vi</sup>, Cg7—Cg8<sup>vii</sup>, may further stabilize the structure [centroid-centroid distances = 3.851 (3), 3.846 (3), 3.869 (3), 3.888 (3), 3.756 (3), 3.990 (3) and 3.794 (2), 3.692 (2) Å; symmetry codes: (i) -x, 1 - y, -z, (ii) x, 1/2 - y, -1/2 + z, (iii) -x, 1 - y, 1 - z, (iv) 1 - x, 1 - y, -z, (v) 1 - x, 1 - y, 1 - z, (vi) -x, -1/2 + y, 1/2 - z, (vii) 1 - x, -1/2 + y, 1/2 - z; Cg1, Cg2, Cg3, Cg4, Cg5, Cg6, Cg7 and Cg8 are the centroids of the rings A (C2—C7), B (C9—C14), C (N1/C15—C19), D (N3/C21—C25), E (C28—C33), F (C35—C40), G (N5/C41—C45) and H (N7/C47—C51), respectively.

### Experimental

The title compound was prepared by the reaction of  $CuSO_4.5H_2O$  (1.23 g, 5 mmol) in  $H_2O$  (20 ml) and NA (1.22 g, 10 mmol) in  $H_2O$  (20 ml) with sodium 4-fluorobenzoate (1.62 g, 10 mmol) in  $H_2O$  (50 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving blue single crystals.

#### Refinement

Atoms H71, H72, H141, H142, H161, H162, H171, H172, H181, H182, H191, H192, H201, H202, H211 and H212 (for water molecules) were located in a difference Fourier map and were refined by applying restraints. The N-bound and C-bound H-atoms were positioned geometrically with N—H = 0.86 Å, for NH<sub>2</sub> H-atoms, and C—H = 0.93 Å, for aromatic H-atoms, and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2 \times U_{eq}(C,N)$ .

#### Figures



Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 50% probability displacement ellipsoids. Crystalline water molecules and hydrogen atoms have been omitted for clarity.

### Aquabis(4-fluorobenzoato- $\kappa O$ )bis(nicotinamide- $\kappa N^1$ )copper(II) nicotinamide hemisolvate trihydrate

Crystal data

| $[Cu(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)]\cdot 0.5C_6H_6N_2O\cdot 3H_2O\cdot 3$ | $2 \mathcal{O}(000) = 2968$                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| $M_r = 719.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $D_{\rm x} = 1.580 {\rm ~Mg~m}^{-3}$                                                                                                  |
| Monoclinic, $P2_1/c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å                                                                                        |
| Hall symbol: -P 2ybc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cell parameters from 9877 reflections                                                                                                 |
| a = 18.4108 (4) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\theta = 2.3 - 28.4^{\circ}$                                                                                                         |
| b = 14.8908 (3) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mu = 0.80 \text{ mm}^{-1}$                                                                                                          |
| c = 22.8569 (5)  Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T = 100  K                                                                                                                            |
| $\beta = 105.247 \ (3)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Block, blue                                                                                                                           |
| $V = 6045.7 (2) \text{ Å}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.24 \times 0.20 \times 0.19 \text{ mm}$                                                                                             |
| Z = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |
| a = 18.4108 (4)  Å<br>b = 14.8908 (3)  Å<br>c = 22.8569 (5)  Å<br>$\beta = 105.247 (3)^{\circ}$<br>$V = 6045.7 (2) \text{ Å}^{3}$<br>Z = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\theta = 2.3-28.4^{\circ}$<br>$\mu = 0.80 \text{ mm}^{-1}$<br>T = 100  K<br>Block, blue<br>$0.24 \times 0.20 \times 0.19 \text{ mm}$ |

#### Data collection

| Bruker Kappa APEXII CCD area-detector diffractometer                 | 15210 independent reflections                                             |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                             | 11162 reflections with $I > 2\sigma(I)$                                   |
| graphite                                                             | $R_{\rm int} = 0.060$                                                     |
| $\varphi$ and $\omega$ scans                                         | $\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2005) | $h = -24 \rightarrow 24$                                                  |
| $T_{\min} = 0.825, T_{\max} = 0.858$                                 | $k = -17 \rightarrow 19$                                                  |
| 103729 measured reflections                                          | $l = -30 \rightarrow 29$                                                  |
|                                                                      |                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                       |
|---------------------------------|--------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.063$ | Hydrogen site location: inferred from neighbouring sites                             |
| $wR(F^2) = 0.160$               | H atoms treated by a mixture of independent and constrained refinement               |
| <i>S</i> = 1.12                 | $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 20.8651P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 15210 reflections               | $(\Delta/\sigma)_{\text{max}} = 0.001$                                               |
| 900 parameters                  | $\Delta \rho_{max} = 1.27 \text{ e } \text{\AA}^{-3}$                                |
| 34 restraints                   | $\Delta \rho_{\rm min} = -1.16 \text{ e } \text{\AA}^{-3}$                           |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

| Fractional atc | mic coordinates | and isotropic | or equivalent | t isotropic a | displacement | parameters | $(Å^2$ | ) |
|----------------|-----------------|---------------|---------------|---------------|--------------|------------|--------|---|
|----------------|-----------------|---------------|---------------|---------------|--------------|------------|--------|---|

|     | x             | у            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|--------------|--------------|---------------------------|
| Cu1 | 0.08147 (2)   | 0.39867 (3)  | 0.26867 (2)  | 0.01246 (11)              |
| Cu2 | 0.42670 (2)   | 0.18332 (3)  | 0.73175 (2)  | 0.01296 (11)              |
| 01  | 0.06780 (14)  | 0.39884 (18) | 0.18189 (11) | 0.0160 (5)                |
| O2  | -0.05644 (15) | 0.3901 (2)   | 0.16749 (12) | 0.0201 (6)                |
| O3  | 0.08077 (16)  | 0.39915 (19) | 0.35352 (12) | 0.0198 (6)                |
| O4  | -0.04449 (16) | 0.40360 (19) | 0.32462 (12) | 0.0210 (6)                |

| O5   | 0.22275 (15)  | 0.1525 (2)   | 0.16971 (12) | 0.0199 (6)  |
|------|---------------|--------------|--------------|-------------|
| O6   | 0.21882 (15)  | 0.6496 (2)   | 0.15711 (12) | 0.0200 (6)  |
| O7   | 0.21840 (15)  | 0.3835 (2)   | 0.29314 (13) | 0.0176 (6)  |
| H71  | 0.242 (2)     | 0.436 (2)    | 0.308 (2)    | 0.028 (13)* |
| H72  | 0.236 (3)     | 0.362 (3)    | 0.2673 (18)  | 0.036 (15)* |
| O8   | 0.43509 (14)  | 0.17369 (18) | 0.64890 (12) | 0.0163 (5)  |
| O9   | 0.55938 (14)  | 0.19444 (19) | 0.67500 (12) | 0.0181 (6)  |
| O10  | 0.43810 (15)  | 0.18487 (18) | 0.81861 (12) | 0.0170 (6)  |
| 011  | 0.56355 (16)  | 0.1867 (2)   | 0.83741 (13) | 0.0245 (7)  |
| 012  | 0.28210 (15)  | 0.4238 (2)   | 0.82874 (13) | 0.0211 (6)  |
| 013  | 0.28108 (15)  | -0.0442 (2)  | 0.84207 (13) | 0.0218 (6)  |
| O14  | 0.28719 (15)  | 0.18029 (19) | 0.70437 (12) | 0.0174 (6)  |
| H141 | 0.272 (3)     | 0.145 (3)    | 0.6696 (16)  | 0.044*      |
| H142 | 0.266 (3)     | 0.2367 (18)  | 0.694 (2)    | 0.044*      |
| 015  | 0.25627 (17)  | 0.3240 (2)   | 0.47017 (14) | 0.0277 (7)  |
| O16  | 0.2515 (2)    | -0.2231 (3)  | 0.9564 (2)   | 0.0412 (9)  |
| H161 | 0.239 (4)     | -0.1857 (17) | 0.956 (3)    | 0.044*      |
| H162 | 0.230 (3)     | -0.214 (4)   | 0.972 (3)    | 0.044*      |
| 017  | 0.6950 (2)    | 0.2562 (3)   | 0.9124 (2)   | 0.0394 (9)  |
| H171 | 0.713 (4)     | 0.285 (3)    | 0.9312 (18)  | 0.044*      |
| H172 | 0.711 (3)     | 0.292 (3)    | 0.898 (2)    | 0.044*      |
| O18  | 0.2330 (2)    | -0.0874 (3)  | 0.0866 (2)   | 0.0545 (12) |
| H181 | 0.270 (3)     | -0.104 (4)   | 0.113 (2)    | 0.044*      |
| H182 | 0.260 (3)     | -0.112 (4)   | 0.084 (2)    | 0.044*      |
| 019  | 0.2134 (3)    | -0.0382 (3)  | 0.9384 (2)   | 0.0525 (11) |
| H191 | 0.230 (3)     | -0.035 (4)   | 0.9120 (16)  | 0.044*      |
| H192 | 0.234 (3)     | -0.001(3)    | 0.958 (2)    | 0.044*      |
| O20  | 0.2792 (3)    | 0.4252 (3)   | 0.5720 (2)   | 0.0743 (15) |
| H201 | 0.2682        | 0.4695       | 0.5547       | 0.044*      |
| H202 | 0.2624        | 0.4125       | 0.5450       | 0.044*      |
| O21  | -0.21237 (17) | 0.3687 (2)   | 0.12010 (14) | 0.0279 (7)  |
| H211 | -0.1621 (12)  | 0.380 (3)    | 0.131 (2)    | 0.044*      |
| H212 | -0.218 (3)    | 0.322 (3)    | 0.095 (2)    | 0.044*      |
| N1   | 0.08483 (16)  | 0.2615 (2)   | 0.26844 (13) | 0.0122 (6)  |
| N2   | 0.17473 (19)  | 0.0141 (2)   | 0.17423 (17) | 0.0253 (8)  |
| H2A  | 0.1997        | -0.0082      | 0.1508       | 0.030*      |
| H2B  | 0.1454        | -0.0196      | 0.1883       | 0.030*      |
| N3   | 0.09809 (17)  | 0.5334 (2)   | 0.26912 (14) | 0.0149 (6)  |
| N4   | 0.1643 (2)    | 0.7834 (2)   | 0.16339 (17) | 0.0259 (8)  |
| H4A  | 0.1834        | 0.8072       | 0.1366       | 0.031*      |
| H4B  | 0.1359        | 0.8148       | 0.1800       | 0.031*      |
| N5   | 0.41525 (17)  | 0.3183 (2)   | 0.72846 (14) | 0.0139 (6)  |
| N6   | 0.31899 (19)  | 0.5658 (2)   | 0.81972 (16) | 0.0228 (8)  |
| H6A  | 0.2919        | 0.5863       | 0.8422       | 0.027*      |
| H6B  | 0.3457        | 0.6019       | 0.8047       | 0.027*      |
| N7   | 0.41236 (17)  | 0.0480 (2)   | 0.73400 (14) | 0.0152 (6)  |
| N8   | 0.32489 (18)  | -0.1853 (2)  | 0.84234 (16) | 0.0214 (7)  |
| H8A  | 0.3018        | -0.2027      | 0.8685       | 0.026*      |
| H8B  | 0.3518        | -0.2227      | 0.8284       | 0.026*      |

| N9   | 0.25532 (19)  | 0.1124 (2)   | 0.58553 (16)  | 0.0221 (7) |
|------|---------------|--------------|---------------|------------|
| N10  | 0.24886 (19)  | 0.2368 (2)   | 0.38840 (16)  | 0.0239 (8) |
| H10A | 0.2493        | 0.2826       | 0.3656        | 0.029*     |
| H10B | 0.2461        | 0.1835       | 0.3735        | 0.029*     |
| F1   | -0.02454 (14) | 0.3629 (2)   | -0.10047 (10) | 0.0292 (6) |
| F2   | 0.01950 (14)  | 0.34751 (18) | 0.60768 (10)  | 0.0266 (6) |
| F3   | 0.49145 (14)  | 0.08908 (18) | 0.39708 (10)  | 0.0270 (6) |
| F4   | 0.52020 (13)  | 0.07895 (17) | 1.09345 (10)  | 0.0240 (5) |
| C1   | 0.0005 (2)    | 0.3913 (3)   | 0.14816 (17)  | 0.0147 (7) |
| C2   | -0.0058 (2)   | 0.3831 (3)   | 0.08151 (16)  | 0.0140 (7) |
| C3   | 0.0562 (2)    | 0.4003 (3)   | 0.05915 (18)  | 0.0189 (8) |
| Н3   | 0.1019        | 0.4165       | 0.0856        | 0.023*     |
| C4   | 0.0500 (2)    | 0.3933 (3)   | -0.00216 (18) | 0.0234 (9) |
| H4   | 0.0913        | 0.4043       | -0.0174       | 0.028*     |
| C5   | -0.0181 (2)   | 0.3697 (3)   | -0.04024 (17) | 0.0191 (8) |
| C6   | -0.0804 (2)   | 0.3515 (3)   | -0.01972 (19) | 0.0238 (9) |
| H6   | -0.1257       | 0.3343       | -0.0464       | 0.029*     |
| C7   | -0.0738 (2)   | 0.3594 (3)   | 0.04143 (18)  | 0.0208 (8) |
| H7   | -0.1155       | 0.3487       | 0.0561        | 0.025*     |
| C8   | 0.0162 (2)    | 0.3976 (3)   | 0.36483 (17)  | 0.0165 (8) |
| C9   | 0.0169 (2)    | 0.3862 (3)   | 0.42988 (17)  | 0.0154 (7) |
| C10  | -0.0474 (2)   | 0.4021 (3)   | 0.44950 (18)  | 0.0185 (8) |
| H10  | -0.0912       | 0.4214       | 0.4218        | 0.022*     |
| C11  | -0.0472 (2)   | 0.3895 (3)   | 0.50937 (18)  | 0.0188 (8) |
| H11  | -0.0901       | 0.4002       | 0.5225        | 0.023*     |
| C12  | 0.0184 (2)    | 0.3608 (3)   | 0.54878 (17)  | 0.0191 (8) |
| C13  | 0.0833 (2)    | 0.3444 (3)   | 0.53159 (18)  | 0.0215 (9) |
| H13  | 0.1267        | 0.3247       | 0.5595        | 0.026*     |
| C14  | 0.0822 (2)    | 0.3582 (3)   | 0.47177 (18)  | 0.0195 (8) |
| H14  | 0.1257        | 0.3486       | 0.4593        | 0.023*     |
| C15  | 0.0631 (2)    | 0.2073 (3)   | 0.30758 (17)  | 0.0152 (7) |
| H15  | 0.0392        | 0.2324       | 0.3348        | 0.018*     |
| C16  | 0.0748 (2)    | 0.1154 (3)   | 0.30898 (17)  | 0.0167 (8) |
| H16  | 0.0576        | 0.0795       | 0.3359        | 0.020*     |
| C17  | 0.1122 (2)    | 0.0774 (3)   | 0.27013 (18)  | 0.0165 (8) |
| H17  | 0.1207        | 0.0158       | 0.2704        | 0.020*     |
| C18  | 0.1370 (2)    | 0.1331 (3)   | 0.23057 (17)  | 0.0153 (7) |
| C19  | 0.1215 (2)    | 0.2243 (3)   | 0.23078 (16)  | 0.0144 (7) |
| H19  | 0.1372        | 0.2613       | 0.2037        | 0.017*     |
| C20  | 0.1814 (2)    | 0.1009 (3)   | 0.18868 (17)  | 0.0168 (8) |
| C21  | 0.0810(2)     | 0.5883 (3)   | 0.31046 (17)  | 0.0187 (8) |
| H21  | 0.0599        | 0.5632       | 0.3394        | 0.022*     |
| C22  | 0.0930 (2)    | 0.6793 (3)   | 0.31204 (18)  | 0.0213 (8) |
| H22  | 0.0806        | 0.7144       | 0.3416        | 0.026*     |
| C23  | 0.1238 (2)    | 0.7181 (3)   | 0.26920 (17)  | 0.0177 (8) |
| H23  | 0.1317        | 0.7797       | 0.2689        | 0.021*     |
| C24  | 0.1426 (2)    | 0.6625 (3)   | 0.22630 (16)  | 0.0138 (7) |
| C25  | 0.1293 (2)    | 0.5711 (3)   | 0.22823 (16)  | 0.0132 (7) |
| H25  | 0.1426        | 0.5341       | 0.1999        | 0.016*     |
|      |               |              |               |            |

| C26        | 0.1785 (2)             | 0.6982 (3) | 0.17921 (17) | 0.0162 (8)          |
|------------|------------------------|------------|--------------|---------------------|
| C27        | 0.4991 (2)             | 0.1754 (3) | 0.63700 (17) | 0.0152 (7)          |
| C28        | 0.4987 (2)             | 0.1499 (3) | 0.57344 (17) | 0.0147 (7)          |
| C29        | 0.4341 (2)             | 0.1129 (3) | 0.53510 (17) | 0.0174 (8)          |
| H29        | 0.3922                 | 0.1023     | 0.5496       | 0.021*              |
| C30        | 0.4315 (2)             | 0.0917 (3) | 0.47550 (17) | 0.0197 (8)          |
| H30        | 0.3886                 | 0.0667     | 0.4498       | 0.024*              |
| C31        | 0.4944 (2)             | 0.1088 (3) | 0.45565 (17) | 0.0200 (8)          |
| C32        | 0.5601 (2)             | 0.1439 (3) | 0.49182 (19) | 0.0204 (8)          |
| H32        | 0.6019                 | 0.1536     | 0.4770       | 0.024*              |
| C33        | 0.5614 (2)             | 0.1642 (3) | 0.55158 (18) | 0.0177 (8)          |
| H33        | 0.6050                 | 0.1877     | 0.5773       | 0.021*              |
| C34        | 0.5048 (2)             | 0.1770 (3) | 0.85397 (17) | 0.0177 (8)          |
| C35        | 0.5083 (2)             | 0.1522 (3) | 0.91824 (17) | 0.0162 (8)          |
| C36        | 0.4457 (2)             | 0.1608 (3) | 0.94108 (17) | 0.0166 (8)          |
| H36        | 0.4007                 | 0.1821     | 0.9161       | 0.020*              |
| C37        | 0.4497 (2)             | 0.1380 (3) | 1.00013 (18) | 0.0191 (8)          |
| H37        | 0.4084                 | 0.1459     | 1.0159       | 0.023*              |
| C38        | 0.5160 (2)             | 0.1036 (3) | 1.03528 (17) | 0.0177 (8)          |
| C39        | 0.5794 (2)             | 0.0924 (3) | 1.01446 (18) | 0.0178 (8)          |
| H39        | 0.6236                 | 0.0688     | 1.0393       | 0.021*              |
| C40        | 0.5748 (2)             | 0.1175 (3) | 0.95534 (17) | 0.0158 (7)          |
| H40        | 0.6167                 | 0.1112     | 0.9402       | 0.019*              |
| C41        | 0.4338 (2)             | 0.3706 (3) | 0.68716 (17) | 0.0169 (8)          |
| H41        | 0.4563                 | 0.3443     | 0.6594       | 0.020*              |
| C42        | 0.4208(2)              | 0.4623 (3) | 0 68388 (18) | 0.0186 (8)          |
| H42        | 0 4356                 | 0 4969     | 0.6552       | 0.022*              |
| C43        | 0 3853 (2)             | 0 5017 (3) | 0 72407 (17) | 0.0181 (8)          |
| H43        | 0 3760                 | 0.5632     | 0.7228       | 0.022*              |
| C44        | 0 3640 (2)             | 0.4473(3)  | 0.76622 (17) | 0.0160 (8)          |
| C45        | 0.3807(2)              | 0 3564 (3) | 0.76707 (16) | 0.0148(7)           |
| H45        | 0.3672                 | 0.3201     | 0 7957       | 0.018*              |
| C46        | 0.3072                 | 0.4785(3)  | 0.80826 (17) | 0.0165 (8)          |
| C47        | 0.5191(2)<br>0.4298(2) | -0.0115(3) | 0.69489(17)  | 0.0177 (8)          |
| H47        | 0.4527                 | 0.0099     | 0.6659       | 0.021*              |
| C48        | 0.4153(2)              | -0.1015(3) | 0.69599 (18) | 0.0197 (8)          |
| H48        | 0.4291                 | -0.1401    | 0.6688       | 0.0127 (0)          |
| C49        | 0.4291                 | -0.1346(3) | 0.73790 (17) | 0.024<br>0.0158 (7) |
| H49        | 0.3695                 | -0.1955    | 0.7393       | 0.0198 (7)          |
| C50        | 0.3606 (2)             | -0.0748(3) | 0.77775(17)  | 0.0153(7)           |
| C51        | 0.37847(19)            | 0.0150 (3) | 0.77445(16)  | 0.0133(7)           |
| H51        | 0.37647 (17)           | 0.0130 (3) | 0.8010       | 0.0141(7)<br>0.017* |
| C52        | 0.3191(2)              | -0.1009(3) | 0.82351 (18) | 0.0170 (8)          |
| C52        | 0.5191(2)<br>0.2484(2) | 0.1007(3)  | 0.56354 (19) | 0.0170(0)           |
| H53        | 0.2476                 | -0.0189    | 0.5899       | 0.0220())           |
| C54        | 0.2475(2)              | 0.0093 (3) | 0.50311 (18) | 0.027               |
| UJ7<br>H54 | 0.2387                 | -0.0498    | 0.30311 (10) | 0.0210(0)<br>0.025* |
| C55        | 0.2307<br>0.2424(2)    | 0.0792 (3) | 0.46307 (10) | 0.025               |
| UJJ<br>H55 | 0.274                  | 0.0676     | 0.40207 (19) | 0.0217 (9)          |
| 1155       | 0.2377                 | 0.0070     | 0.7222       | 0.020               |

| C56 | 0.2497 (2) | 0.1665 (3) | 0.48470 (19) | 0.0205 (8) |
|-----|------------|------------|--------------|------------|
| C57 | 0.2559 (2) | 0.1792 (3) | 0.54637 (19) | 0.0210 (8) |
| H57 | 0.2608     | 0.2377     | 0.5612       | 0.025*     |
| C58 | 0.2523 (2) | 0.2486 (3) | 0.4470 (2)   | 0.0225 (9) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|-------------|-------------|-------------|---------------|--------------|---------------|
| Cul | 0.0153 (2)  | 0.0130 (2)  | 0.0107 (2)  | 0.00078 (17)  | 0.00629 (16) | 0.00059 (18)  |
| Cu2 | 0.0144 (2)  | 0.0151 (2)  | 0.0107 (2)  | -0.00007 (17) | 0.00571 (16) | -0.00086 (18) |
| O1  | 0.0191 (13) | 0.0169 (14) | 0.0115 (12) | -0.0002 (11)  | 0.0030 (10)  | -0.0009 (11)  |
| O2  | 0.0217 (14) | 0.0263 (16) | 0.0149 (13) | 0.0016 (12)   | 0.0094 (11)  | -0.0002 (12)  |
| O3  | 0.0274 (15) | 0.0200 (15) | 0.0165 (13) | 0.0022 (12)   | 0.0134 (11)  | -0.0005 (11)  |
| O4  | 0.0280 (15) | 0.0206 (15) | 0.0145 (13) | 0.0017 (12)   | 0.0054 (11)  | 0.0019 (11)   |
| 05  | 0.0171 (13) | 0.0259 (16) | 0.0180 (14) | -0.0019 (11)  | 0.0068 (11)  | -0.0040 (12)  |
| O6  | 0.0187 (13) | 0.0249 (16) | 0.0196 (14) | 0.0030 (11)   | 0.0108 (11)  | 0.0013 (12)   |
| 07  | 0.0162 (13) | 0.0193 (15) | 0.0195 (14) | -0.0013 (11)  | 0.0085 (11)  | -0.0032 (12)  |
| 08  | 0.0166 (13) | 0.0186 (14) | 0.0164 (13) | -0.0018 (11)  | 0.0089 (10)  | -0.0028 (11)  |
| O9  | 0.0157 (13) | 0.0222 (15) | 0.0170 (13) | -0.0010 (11)  | 0.0054 (10)  | -0.0025 (11)  |
| O10 | 0.0197 (13) | 0.0184 (14) | 0.0122 (12) | 0.0014 (11)   | 0.0027 (10)  | -0.0019 (11)  |
| 011 | 0.0236 (15) | 0.0340 (18) | 0.0182 (14) | -0.0015 (13)  | 0.0098 (12)  | 0.0034 (13)   |
| O12 | 0.0209 (14) | 0.0231 (16) | 0.0228 (15) | -0.0032 (12)  | 0.0119 (12)  | -0.0042 (12)  |
| O13 | 0.0214 (14) | 0.0242 (16) | 0.0239 (15) | 0.0055 (12)   | 0.0131 (12)  | 0.0057 (12)   |
| O14 | 0.0180 (13) | 0.0182 (15) | 0.0174 (13) | 0.0007 (11)   | 0.0071 (11)  | -0.0026 (11)  |
| 015 | 0.0281 (16) | 0.0247 (17) | 0.0328 (17) | 0.0000 (13)   | 0.0123 (13)  | 0.0001 (14)   |
| O16 | 0.040 (2)   | 0.034 (2)   | 0.054 (3)   | -0.0011 (18)  | 0.0187 (18)  | -0.0092 (19)  |
| O17 | 0.040 (2)   | 0.040 (2)   | 0.042 (2)   | -0.0064 (17)  | 0.0167 (18)  | 0.0105 (18)   |
| O18 | 0.043 (2)   | 0.059 (3)   | 0.069 (3)   | 0.007 (2)     | 0.027 (2)    | -0.018 (2)    |
| O19 | 0.072 (3)   | 0.051 (3)   | 0.050 (3)   | 0.010 (2)     | 0.044 (2)    | 0.009 (2)     |
| O20 | 0.084 (4)   | 0.074 (4)   | 0.067 (3)   | -0.018 (3)    | 0.025 (3)    | -0.007 (3)    |
| O21 | 0.0235 (15) | 0.0342 (19) | 0.0292 (17) | 0.0078 (14)   | 0.0127 (13)  | -0.0018 (14)  |
| N1  | 0.0138 (14) | 0.0136 (16) | 0.0098 (14) | 0.0004 (12)   | 0.0044 (11)  | 0.0000 (12)   |
| N2  | 0.0215 (17) | 0.0211 (19) | 0.036 (2)   | -0.0017 (14)  | 0.0130 (15)  | -0.0129 (16)  |
| N3  | 0.0147 (15) | 0.0164 (17) | 0.0146 (15) | 0.0005 (12)   | 0.0057 (12)  | -0.0011 (13)  |
| N4  | 0.038 (2)   | 0.0177 (18) | 0.031 (2)   | -0.0012 (16)  | 0.0239 (17)  | 0.0020 (15)   |
| N5  | 0.0141 (14) | 0.0155 (16) | 0.0132 (15) | -0.0022 (12)  | 0.0057 (12)  | -0.0020 (13)  |
| N6  | 0.0244 (18) | 0.0207 (19) | 0.0290 (19) | -0.0005 (14)  | 0.0173 (15)  | -0.0058 (15)  |
| N7  | 0.0133 (14) | 0.0209 (17) | 0.0125 (15) | 0.0016 (13)   | 0.0053 (12)  | -0.0017 (13)  |
| N8  | 0.0205 (16) | 0.0224 (19) | 0.0272 (18) | 0.0018 (14)   | 0.0165 (14)  | 0.0060 (15)   |
| N9  | 0.0206 (17) | 0.0243 (19) | 0.0238 (18) | -0.0021 (14)  | 0.0099 (14)  | -0.0004 (15)  |
| N10 | 0.0273 (18) | 0.0180 (18) | 0.0258 (19) | 0.0023 (14)   | 0.0063 (15)  | 0.0045 (15)   |
| F1  | 0.0254 (13) | 0.0538 (18) | 0.0112 (11) | -0.0005 (12)  | 0.0097 (9)   | -0.0023 (11)  |
| F2  | 0.0291 (13) | 0.0410 (16) | 0.0115 (11) | -0.0004 (11)  | 0.0087 (10)  | 0.0009 (11)   |
| F3  | 0.0334 (14) | 0.0382 (16) | 0.0124 (11) | 0.0017 (11)   | 0.0109 (10)  | -0.0032 (10)  |
| F4  | 0.0273 (12) | 0.0346 (15) | 0.0124 (11) | -0.0016 (11)  | 0.0091 (9)   | 0.0040 (10)   |
| C1  | 0.0189 (18) | 0.0104 (18) | 0.0155 (18) | 0.0002 (14)   | 0.0057 (14)  | 0.0016 (14)   |
| C2  | 0.0180 (17) | 0.0128 (18) | 0.0119 (17) | 0.0001 (14)   | 0.0053 (14)  | 0.0021 (14)   |
| C3  | 0.0154 (17) | 0.024 (2)   | 0.0183 (19) | -0.0029 (16)  | 0.0059 (15)  | 0.0003 (16)   |

| C4  | 0.0211 (19) | 0.033 (2)   | 0.019 (2)   | -0.0036 (18) | 0.0116 (16) | -0.0003 (18) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C5  | 0.025 (2)   | 0.025 (2)   | 0.0087 (17) | 0.0033 (17)  | 0.0077 (15) | 0.0004 (15)  |
| C6  | 0.0159 (18) | 0.037 (3)   | 0.019 (2)   | -0.0028 (17) | 0.0046 (15) | -0.0012 (18) |
| C7  | 0.0185 (19) | 0.030 (2)   | 0.0167 (19) | -0.0016 (17) | 0.0090 (15) | -0.0013 (17) |
| C8  | 0.029 (2)   | 0.0083 (18) | 0.0147 (18) | 0.0021 (15)  | 0.0103 (15) | 0.0004 (14)  |
| C9  | 0.0215 (18) | 0.0122 (18) | 0.0137 (17) | 0.0012 (14)  | 0.0068 (14) | -0.0011 (14) |
| C10 | 0.0178 (18) | 0.020 (2)   | 0.0175 (18) | 0.0034 (15)  | 0.0048 (15) | -0.0006 (16) |
| C11 | 0.0170 (18) | 0.022 (2)   | 0.0196 (19) | -0.0010 (15) | 0.0090 (15) | -0.0007 (16) |
| C12 | 0.026 (2)   | 0.021 (2)   | 0.0121 (18) | -0.0019 (16) | 0.0085 (15) | -0.0007 (15) |
| C13 | 0.0208 (19) | 0.028 (2)   | 0.0157 (19) | 0.0051 (17)  | 0.0048 (15) | 0.0025 (17)  |
| C14 | 0.0210 (19) | 0.022 (2)   | 0.0185 (19) | 0.0007 (16)  | 0.0103 (15) | -0.0012 (16) |
| C15 | 0.0177 (17) | 0.0150 (19) | 0.0147 (18) | -0.0011 (14) | 0.0075 (14) | -0.0016 (15) |
| C16 | 0.0221 (19) | 0.0145 (19) | 0.0155 (18) | -0.0012 (15) | 0.0085 (15) | 0.0014 (15)  |
| C17 | 0.0166 (17) | 0.0113 (18) | 0.0216 (19) | 0.0006 (14)  | 0.0052 (15) | -0.0005 (15) |
| C18 | 0.0122 (16) | 0.019 (2)   | 0.0143 (17) | 0.0000 (14)  | 0.0028 (14) | -0.0020 (15) |
| C19 | 0.0138 (17) | 0.0172 (19) | 0.0122 (17) | -0.0020 (14) | 0.0037 (13) | -0.0004 (14) |
| C20 | 0.0102 (16) | 0.022 (2)   | 0.0171 (18) | -0.0001 (15) | 0.0026 (14) | -0.0041 (16) |
| C21 | 0.0227 (19) | 0.023 (2)   | 0.0122 (17) | -0.0046 (16) | 0.0088 (15) | -0.0015 (15) |
| C22 | 0.028 (2)   | 0.021 (2)   | 0.019 (2)   | -0.0034 (17) | 0.0139 (16) | -0.0053 (17) |
| C23 | 0.0198 (18) | 0.016 (2)   | 0.0180 (19) | -0.0019 (15) | 0.0054 (15) | -0.0041 (15) |
| C24 | 0.0136 (16) | 0.0150 (19) | 0.0131 (17) | -0.0008 (14) | 0.0042 (13) | 0.0005 (14)  |
| C25 | 0.0136 (16) | 0.0154 (19) | 0.0119 (17) | 0.0019 (14)  | 0.0057 (13) | -0.0001 (14) |
| C26 | 0.0128 (16) | 0.020 (2)   | 0.0153 (18) | -0.0040 (15) | 0.0025 (14) | -0.0004 (15) |
| C27 | 0.0191 (18) | 0.0137 (19) | 0.0142 (18) | 0.0001 (14)  | 0.0069 (14) | -0.0002 (14) |
| C28 | 0.0201 (18) | 0.0124 (18) | 0.0134 (17) | 0.0015 (14)  | 0.0072 (14) | -0.0008 (14) |
| C29 | 0.0188 (18) | 0.017 (2)   | 0.0186 (19) | 0.0007 (15)  | 0.0088 (15) | 0.0000 (15)  |
| C30 | 0.0232 (19) | 0.022 (2)   | 0.0138 (18) | 0.0005 (16)  | 0.0053 (15) | -0.0004 (16) |
| C31 | 0.028 (2)   | 0.023 (2)   | 0.0121 (18) | 0.0041 (17)  | 0.0110 (15) | 0.0018 (16)  |
| C32 | 0.023 (2)   | 0.020 (2)   | 0.024 (2)   | 0.0022 (16)  | 0.0150 (16) | 0.0030 (17)  |
| C33 | 0.0196 (18) | 0.016 (2)   | 0.0197 (19) | -0.0004 (15) | 0.0090 (15) | -0.0006 (15) |
| C34 | 0.0236 (19) | 0.0150 (19) | 0.0157 (18) | 0.0010 (15)  | 0.0076 (15) | -0.0017 (15) |
| C35 | 0.0182 (18) | 0.0158 (19) | 0.0151 (18) | -0.0008 (15) | 0.0052 (14) | -0.0022 (15) |
| C36 | 0.0174 (18) | 0.0140 (19) | 0.0189 (19) | 0.0021 (14)  | 0.0057 (15) | -0.0006 (15) |
| C37 | 0.0193 (19) | 0.021 (2)   | 0.0197 (19) | -0.0003 (16) | 0.0105 (15) | -0.0043 (16) |
| C38 | 0.0230 (19) | 0.020 (2)   | 0.0104 (17) | -0.0021 (16) | 0.0045 (14) | -0.0009 (15) |
| C39 | 0.0188 (18) | 0.017 (2)   | 0.0176 (19) | -0.0002 (15) | 0.0044 (15) | 0.0014 (15)  |
| C40 | 0.0159 (17) | 0.0143 (19) | 0.0190 (18) | -0.0020 (14) | 0.0075 (14) | -0.0026 (15) |
| C41 | 0.0184 (18) | 0.017 (2)   | 0.0178 (18) | 0.0002 (15)  | 0.0085 (15) | -0.0001 (15) |
| C42 | 0.0209 (19) | 0.017 (2)   | 0.0204 (19) | 0.0002 (15)  | 0.0106 (15) | 0.0024 (16)  |
| C43 | 0.0179 (18) | 0.018 (2)   | 0.0200 (19) | 0.0025 (15)  | 0.0070 (15) | -0.0016 (16) |
| C44 | 0.0112 (16) | 0.023 (2)   | 0.0148 (18) | -0.0029 (14) | 0.0051 (14) | -0.0044 (15) |
| C45 | 0.0132 (17) | 0.019 (2)   | 0.0131 (17) | -0.0025 (14) | 0.0056 (13) | -0.0028 (15) |
| C46 | 0.0100 (16) | 0.023 (2)   | 0.0161 (18) | -0.0015 (15) | 0.0034 (14) | -0.0052 (16) |
| C47 | 0.0168 (18) | 0.023 (2)   | 0.0156 (18) | 0.0024 (15)  | 0.0080 (14) | -0.0021 (16) |
| C48 | 0.0231 (19) | 0.022 (2)   | 0.0162 (18) | 0.0056 (16)  | 0.0084 (15) | -0.0005 (16) |
| C49 | 0.0174 (18) | 0.0138 (19) | 0.0156 (18) | 0.0033 (14)  | 0.0036 (14) | 0.0017 (15)  |
| C50 | 0.0124 (16) | 0.019 (2)   | 0.0141 (17) | 0.0000 (14)  | 0.0028 (14) | 0.0023 (15)  |
| C51 | 0.0131 (16) | 0.019 (2)   | 0.0107 (16) | 0.0025 (14)  | 0.0041 (13) | 0.0009 (14)  |
| C52 | 0.0120 (16) | 0.020 (2)   | 0.0196 (19) | 0.0014 (15)  | 0.0045 (14) | 0.0027 (16)  |
|     |             |             |             |              |             |              |

| C53             | 0.0204 (19)   | 0.024 (2)  | 0.024 (2) | -0.0021 (17) | 0.0071 (16) | 0.0005 (17)  |
|-----------------|---------------|------------|-----------|--------------|-------------|--------------|
| C55             | 0.0173 (18)   | 0.029 (2)  | 0.021 (2) | -0.0020 (16) | 0.0082 (16) | -0.0010 (17) |
| C54             | 0.0220 (19)   | 0.021 (2)  | 0.022 (2) | -0.0030 (16) | 0.0081 (16) | 0.0006 (17)  |
| C56             | 0.0152 (18)   | 0.024 (2)  | 0.024 (2) | -0.0010 (16) | 0.0092 (15) | -0.0016 (17) |
| C57             | 0.0175 (18)   | 0.024 (2)  | 0.024 (2) | 0.0013 (16)  | 0.0107 (16) | -0.0026 (17) |
| C58             | 0.0130 (18)   | 0.027 (2)  | 0.028 (2) | 0.0033 (16)  | 0.0069 (16) | 0.0009 (18)  |
|                 |               |            |           |              |             |              |
| Geometric parar | meters (Å, °) |            |           |              |             |              |
| Cu1—O1          |               | 1.933 (3)  | C12—      | C11          | 1.371       | (6)          |
| Cu1—O3          |               | 1.943 (3)  | C12—      | C13          | 1.375       | 6)           |
| Cu1—N1          |               | 2.044 (3)  | C13—      | C14          | 1.377       | ' (5)        |
| Cu1—N3          |               | 2.030 (3)  | C13—      | H13          | 0.9300      |              |
| Cu2—O8          |               | 1.945 (3)  | C14—      | H14          | 0.930       | 0            |
| Cu2—O10         |               | 1.941 (3)  | C15—      | C16          | 1.384       | (5)          |
| Cu2—N5          |               | 2.021 (3)  | C15—      | H15          | 0.930       | 0            |
| Cu2—N7          |               | 2.034 (3)  | C16—      | H16          | 0.930       | 0            |
| 01—C1           |               | 1.281 (4)  | C17—      | C16          | 1.380       | (5)          |
| O2—C1           |               | 1.240 (4)  | C17—      | H17          | 0.930       | 0            |
| O3—C8           |               | 1.282 (5)  | C18—      | C17          | 1.389       | (5)          |
| O4—C8           |               | 1.249 (5)  | C18—      | C20          | 1.492       | 2 (5)        |
| O5—C20          |               | 1.237 (5)  | C19—      | C18          | 1.388       | (5)          |
| O6—C26          |               | 1.235 (5)  | C19—      | H19          | 0.930       | 0            |
| O7—H71          |               | 0.917 (18) | C20—      | N2           | 1.332       | 2 (5)        |
| O7—H72          |               | 0.81 (2)   | C21—      | H21          | 0.930       | 0            |
| O8—C27          |               | 1.278 (4)  | C22—      | C21          | 1.371       | (6)          |
| O9—C27          |               | 1.249 (4)  | C22—      | H22          | 0.930       | 0            |
| O10—C34         |               | 1.285 (5)  | C23—      | C22          | 1.381       | (5)          |
| O11—C34         |               | 1.245 (5)  | C23—      | H23          | 0.930       | 0            |
| O12—C46         |               | 1.235 (5)  | C24—      | C23          | 1.395       | (5)          |
| O13—C52         |               | 1.241 (5)  | C24—      | C25          | 1.386       | (5)          |
| O14—H141        |               | 0.93 (2)   | C25—      | H25          | 0.930       | 0            |
| O14—H142        |               | 0.930 (18) | C26—      | N4           | 1.326       | (5)          |
| O15—C58         |               | 1.237 (5)  | C26—      | C24          | 1.501       | (5)          |
| O16—H161        |               | 0.601 (8)  | C27—      | C28          | 1.499       | (5)          |
| O16—H162        |               | 0.618 (11) | C28—      | C33          | 1.389       | (5)          |
| O17—H171        |               | 0.633 (8)  | C29—      | C30          | 1.387       | (5)          |
| O17—H172        |               | 0.73 (2)   | C29—      | C28          | 1.393       | (5)          |
| O18—H181        |               | 0.812 (18) | C29—      | H29          | 0.930       | 0            |
| O18—H182        |               | 0.64 (2)   | C30—      | H30          | 0.930       | 0            |
| O19—H191        |               | 0.745 (18) | C31—      | C30          | 1.374       | (6)          |
| O19—H192        |               | 0.742 (18) | C32—      | C31          | 1.376       | 6(6)         |
| O20—H201        |               | 0.770      | C32—      | C33          | 1.393       | (5)          |
| O20—H202        |               | 0.640      | C32—      | H32          | 0.930       | 0            |
| O21—H211        |               | 0.911 (18) | С33—      | H33          | 0.930       | 0            |
| O21—H212        |               | 0.90 (2)   | C34—      | C35          | 1.499       | (5)          |
| N1-C15          |               | 1.342 (5)  | C35—      | C40          | 1.391       | (5)          |
| N1-C19          |               | 1.345 (5)  | C36—      | C37          | 1.375       | (5)          |
| N2—H2A          |               | 0.8600     | C36—      | C35          | 1.391       | (5)          |
|                 |               |            |           |              |             |              |

| N2—H2B     | 0.8600      | С36—Н36     | 0.9300    |
|------------|-------------|-------------|-----------|
| N3—C21     | 1.348 (5)   | С37—Н37     | 0.9300    |
| N3—C25     | 1.342 (5)   | C38—C37     | 1.371 (5) |
| N4—H4A     | 0.8600      | C38—C39     | 1.382 (5) |
| N4—H4B     | 0.8600      | С39—Н39     | 0.9300    |
| N5—C41     | 1.335 (5)   | C40—C39     | 1.383 (5) |
| N5—C45     | 1.342 (5)   | C40—H40     | 0.9300    |
| N6—C46     | 1.326 (5)   | C41—C42     | 1.385 (6) |
| N6—H6A     | 0.8600      | C41—H41     | 0.9300    |
| N6—H6B     | 0.8600      | C42—H42     | 0.9300    |
| N7—C51     | 1.337 (5)   | C43—C42     | 1.390 (5) |
| N7—C47     | 1.356 (5)   | C43—H43     | 0.9300    |
| N8—C52     | 1.322 (5)   | C44—C43     | 1.391 (5) |
| N8—H8A     | 0.8600      | C44—C46     | 1.493 (5) |
| N8—H8B     | 0.8600      | C45—C44     | 1.388 (6) |
| N10—H10A   | 0.8600      | C45—H45     | 0.9300    |
| N10—H10B   | 0.8600      | C47—C48     | 1.368 (6) |
| F1—C5      | 1.354 (4)   | С47—Н47     | 0.9300    |
| F2—C12     | 1.355 (4)   | C48—C49     | 1.382 (5) |
| F3—C31     | 1.358 (4)   | C48—H48     | 0.9300    |
| F4—C38     | 1.361 (4)   | C49—H49     | 0.9300    |
| C1—C2      | 1.502 (5)   | C50—C51     | 1.384 (5) |
| С2—С3      | 1.392 (5)   | C50—C49     | 1.386 (5) |
| C2—C7      | 1.388 (5)   | C50—C52     | 1.501 (5) |
| C3—C4      | 1.380 (5)   | C51—H51     | 0.9300    |
| С3—Н3      | 0.9300      | C53—N9      | 1.341 (6) |
| C4—C5      | 1.371 (6)   | C53—C54     | 1.386 (6) |
| C4—H4      | 0.9300      | С53—Н53     | 0.9300    |
| C6—C5      | 1.376 (6)   | С54—Н54     | 0.9300    |
| C6—C7      | 1.376 (6)   | C55—C54     | 1.385 (6) |
| С6—Н6      | 0.9300      | C55—C56     | 1.384 (6) |
| С7—Н7      | 0.9300      | С55—Н55     | 0.9300    |
| C8—C9      | 1.493 (5)   | C57—N9      | 1.340 (5) |
| C9—C10     | 1.392 (5)   | C57—C56     | 1.397 (6) |
| C9—C14     | 1.388 (5)   | С57—Н57     | 0.9300    |
| C10-C11    | 1.380 (5)   | C58—N10     | 1.334 (5) |
| C10—H10    | 0.9300      | C58—C56     | 1.504 (6) |
| C11—H11    | 0.9300      |             |           |
| O1—Cu1—O3  | 172.41 (12) | N3—C21—H21  | 118.3     |
| O1—Cu1—N1  | 89.69 (12)  | C22-C21-H21 | 118.3     |
| O1—Cu1—N3  | 89.01 (12)  | C21—C22—C23 | 119.2 (4) |
| O3—Cu1—N1  | 90.82 (12)  | C21—C22—H22 | 120.4     |
| O3—Cu1—N3  | 91.82 (12)  | C23—C22—H22 | 120.4     |
| N3—Cu1—N1  | 169.64 (12) | C22—C23—C24 | 118.3 (4) |
| O8—Cu2—N5  | 94.10 (12)  | С22—С23—Н23 | 120.8     |
| O8—Cu2—N7  | 89.75 (12)  | С24—С23—Н23 | 120.8     |
| O10—Cu2—O8 | 169.03 (11) | C23—C24—C26 | 122.1 (3) |
| O10—Cu2—N5 | 90.48 (12)  | C25—C24—C23 | 118.8 (3) |
| O10—Cu2—N7 | 88.04 (12)  | C25—C24—C26 | 119.1 (3) |

| N5—Cu2—N7     | 166.71 (12) | N3—C25—C24  | 123.0 (3) |
|---------------|-------------|-------------|-----------|
| C1—O1—Cu1     | 117.5 (2)   | N3—C25—H25  | 118.5     |
| C8—O3—Cu1     | 116.8 (2)   | С24—С25—Н25 | 118.5     |
| H72—O7—H71    | 110 (4)     | O6—C26—N4   | 123.1 (4) |
| C27—O8—Cu2    | 121.3 (2)   | O6—C26—C24  | 120.7 (4) |
| C34—O10—Cu2   | 118.1 (2)   | N4-C26-C24  | 116.2 (3) |
| H142—O14—H141 | 106 (3)     | O8—C27—C28  | 115.6 (3) |
| H161—O16—H162 | 60 (9)      | O9—C27—O8   | 123.9 (3) |
| H171—O17—H172 | 67 (5)      | O9—C27—C28  | 120.6 (3) |
| H181—O18—H182 | 51 (4)      | C29—C28—C27 | 119.7 (3) |
| H191—O19—H192 | 100 (4)     | C33—C28—C27 | 121.1 (3) |
| H201—O20—H202 | 76          | C33—C28—C29 | 119.2 (3) |
| H212—O21—H211 | 106 (4)     | С28—С29—Н29 | 119.6     |
| C15—N1—Cu1    | 125.8 (3)   | C30—C29—C28 | 120.7 (4) |
| C15—N1—C19    | 117.9 (3)   | С30—С29—Н29 | 119.6     |
| C19—N1—Cu1    | 115.7 (2)   | С29—С30—Н30 | 121.0     |
| C20—N2—H2A    | 120.0       | C31—C30—C29 | 117.9 (4) |
| C20—N2—H2B    | 120.0       | С31—С30—Н30 | 121.0     |
| H2A—N2—H2B    | 120.0       | F3—C31—C30  | 117.8 (4) |
| C21—N3—Cu1    | 122.7 (3)   | F3—C31—C32  | 118.4 (3) |
| C25—N3—Cu1    | 120.1 (3)   | C30—C31—C32 | 123.8 (4) |
| C25—N3—C21    | 117.2 (3)   | C31—C32—C33 | 117.2 (4) |
| C26—N4—H4A    | 120.0       | С31—С32—Н32 | 121.4     |
| C26—N4—H4B    | 120.0       | С33—С32—Н32 | 121.4     |
| H4A—N4—H4B    | 120.0       | C28—C33—C32 | 121.2 (4) |
| C41—N5—Cu2    | 124.2 (3)   | С28—С33—Н33 | 119.4     |
| C41—N5—C45    | 118.2 (3)   | С32—С33—Н33 | 119.4     |
| C45—N5—Cu2    | 117.3 (3)   | O10-C34-C35 | 115.3 (3) |
| C46—N6—H6A    | 120.0       | O11—C34—O10 | 124.1 (4) |
| C46—N6—H6B    | 120.0       | O11—C34—C35 | 120.6 (3) |
| H6A—N6—H6B    | 120.0       | C36—C35—C34 | 121.2 (3) |
| C47—N7—Cu2    | 125.1 (3)   | C36—C35—C40 | 119.2 (4) |
| C51—N7—Cu2    | 117.9 (3)   | C40—C35—C34 | 119.6 (3) |
| C51—N7—C47    | 116.8 (3)   | С35—С36—Н36 | 119.6     |
| C52—N8—H8A    | 120.0       | C37—C36—C35 | 120.7 (4) |
| C52—N8—H8B    | 120.0       | С37—С36—Н36 | 119.6     |
| H8A—N8—H8B    | 120.0       | С36—С37—Н37 | 120.8     |
| C57—N9—C53    | 117.3 (4)   | C38—C37—C36 | 118.5 (4) |
| C58—N10—H10A  | 120.0       | С38—С37—Н37 | 120.8     |
| C58—N10—H10B  | 120.0       | F4—C38—C37  | 119.1 (3) |
| H10A—N10—H10B | 120.0       | F4—C38—C39  | 117.9 (3) |
| O1—C1—C2      | 115.0 (3)   | C37—C38—C39 | 123.0 (4) |
| O2—C1—O1      | 124.2 (3)   | C38—C39—C40 | 117.6 (4) |
| O2—C1—C2      | 120.8 (3)   | С38—С39—Н39 | 121.2     |
| C3—C2—C1      | 120.4 (3)   | С40—С39—Н39 | 121.2     |
| C7—C2—C1      | 120.4 (3)   | C35—C40—H40 | 119.5     |
| C7—C2—C3      | 119.2 (3)   | C39—C40—C35 | 120.9 (4) |
| С2—С3—Н3      | 119.9       | С39—С40—Н40 | 119.5     |
| C4—C3—C2      | 120.2 (4)   | N5-C41-C42  | 122.7 (4) |

| С4—С3—Н3    | 119.9     | N5—C41—H41  | 118.6     |
|-------------|-----------|-------------|-----------|
| C3—C4—H4    | 120.6     | C42—C41—H41 | 118.6     |
| C5—C4—C3    | 118.7 (4) | C41—C42—C43 | 119.0 (4) |
| С5—С4—Н4    | 120.6     | C41—C42—H42 | 120.5     |
| F1—C5—C4    | 119.1 (3) | C43—C42—H42 | 120.5     |
| F1—C5—C6    | 118.3 (4) | C42—C43—C44 | 118.6 (4) |
| C4—C5—C6    | 122.7 (4) | C42—C43—H43 | 120.7     |
| C5—C6—C7    | 118.1 (4) | C44—C43—H43 | 120.7     |
| С5—С6—Н6    | 121.0     | C43—C44—C46 | 124.6 (4) |
| С7—С6—Н6    | 121.0     | C45—C44—C43 | 118.5 (3) |
| С2—С7—Н7    | 119.5     | C45—C44—C46 | 116.8 (3) |
| C6—C7—C2    | 121.1 (4) | N5—C45—C44  | 122.9 (4) |
| С6—С7—Н7    | 119.5     | N5—C45—H45  | 118.5     |
| O3—C8—C9    | 115.9 (3) | C44—C45—H45 | 118.5     |
| O4—C8—O3    | 123.2 (3) | O12—C46—N6  | 122.6 (4) |
| O4—C8—C9    | 120.9 (3) | O12—C46—C44 | 119.6 (4) |
| C10—C9—C8   | 121.0 (3) | N6—C46—C44  | 117.7 (4) |
| C14—C9—C8   | 120.1 (3) | N7—C47—C48  | 123.2 (4) |
| C14—C9—C10  | 118.9 (3) | N7—C47—H47  | 118.4     |
| С9—С10—Н10  | 119.5     | C48—C47—H47 | 118.4     |
| C11—C10—C9  | 121.0 (4) | C47—C48—C49 | 119.4 (4) |
| С11—С10—Н10 | 119.5     | C47—C48—H48 | 120.3     |
| C10-C11-H11 | 121.1     | C49—C48—H48 | 120.3     |
| C12—C11—C10 | 117.8 (4) | C48—C49—C50 | 118.4 (4) |
| C12—C11—H11 | 121.1     | C48—C49—H49 | 120.8     |
| F2—C12—C11  | 118.6 (3) | С50—С49—Н49 | 120.8     |
| F2-C12-C13  | 118.1 (4) | C51—C50—C49 | 118.7 (3) |
| C11—C12—C13 | 123.3 (4) | C51—C50—C52 | 117.4 (3) |
| C12—C13—C14 | 118.0 (4) | C49—C50—C52 | 123.9 (4) |
| С12—С13—Н13 | 121.0     | N7—C51—C50  | 123.6 (4) |
| C14—C13—H13 | 121.0     | N7—C51—H51  | 118.2     |
| C9—C14—H14  | 119.5     | C50—C51—H51 | 118.2     |
| C13—C14—C9  | 120.9 (4) | O13—C52—N8  | 122.7 (4) |
| C13—C14—H14 | 119.5     | O13—C52—C50 | 119.9 (4) |
| N1—C15—C16  | 122.5 (3) | N8—C52—C50  | 117.4 (3) |
| N1—C15—H15  | 118.7     | N9—C53—C54  | 122.7 (4) |
| С16—С15—Н15 | 118.7     | N9—C53—H53  | 118.7     |
| С15—С16—Н16 | 120.3     | С54—С53—Н53 | 118.7     |
| C17—C16—C15 | 119.4 (4) | С53—С54—Н54 | 120.3     |
| С17—С16—Н16 | 120.3     | C55—C54—C53 | 119.3 (4) |
| C16—C17—C18 | 118.6 (4) | С55—С54—Н54 | 120.3     |
| С16—С17—Н17 | 120.7     | С54—С55—Н55 | 120.5     |
| С18—С17—Н17 | 120.7     | C56—C55—C54 | 119.1 (4) |
| C17—C18—C20 | 123.7 (4) | С56—С55—Н55 | 120.5     |
| C19—C18—C17 | 118.6 (3) | C55—C56—C57 | 117.5 (4) |
| C19—C18—C20 | 117.7 (3) | C55—C56—C58 | 125.0 (4) |
| N1—C19—C18  | 122.9 (3) | C57—C56—C58 | 117.5 (4) |
| N1—C19—H19  | 118.5     | N9—C57—C56  | 124.1 (4) |
| C18—C19—H19 | 118.5     | N9—C57—H57  | 118.0     |

| O5—C20—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122.8 (4)  | С56—С57—Н57                            | 118.0              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|--------------------|
| O5—C20—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121.1 (4)  | O15-C58-N10                            | 122.1 (4)          |
| N2-C20-C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116.1 (4)  | O15—C58—C56                            | 120.0 (4)          |
| N3—C21—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123.5 (4)  | N10-C58-C56                            | 117.9 (4)          |
| N1—Cu1—O1—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86.0 (3)   | C13—C12—C11—C10                        | 0.3 (7)            |
| N3—Cu1—O1—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -104.3 (3) | C11—C12—C13—C14                        | 0.3 (7)            |
| N1—Cu1—O3—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -90.4 (3)  | C12—C13—C14—C9                         | -1.1 (6)           |
| N3—Cu1—O3—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.6 (3)   | N1-C15-C16-C17                         | 2.0 (6)            |
| O1—Cu1—N1—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -150.7 (3) | C18—C17—C16—C15                        | -0.1 (6)           |
| O1—Cu1—N1—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.8 (3)   | C19—C18—C17—C16                        | -1.5 (5)           |
| O3—Cu1—N1—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.8 (3)   | C20-C18-C17-C16                        | 176.8 (3)          |
| O3—Cu1—N1—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -148.8 (3) | C17—C18—C20—O5                         | -155.7 (4)         |
| N3—Cu1—N1—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 126.5 (6)  | C17—C18—C20—N2                         | 23.1 (5)           |
| N3—Cu1—N1—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -44.0 (8)  | C19—C18—C20—O5                         | 22.5 (5)           |
| O1—Cu1—N3—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 151.1 (3)  | C19—C18—C20—N2                         | -158.6 (4)         |
| O1—Cu1—N3—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -30.9 (3)  | N1-C19-C18-C17                         | 1.3 (5)            |
| O3—Cu1—N3—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -21.3 (3)  | N1-C19-C18-C20                         | -177.1 (3)         |
| O3—Cu1—N3—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 156.7 (3)  | C23—C22—C21—N3                         | 0.4 (6)            |
| N1—Cu1—N3—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -126.0 (6) | C24—C23—C22—C21                        | -1.0 (6)           |
| N1—Cu1—N3—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52.0 (8)   | C25—C24—C23—C22                        | 0.4 (6)            |
| O10—Cu2—O8—C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -22.5(8)   | C26—C24—C23—C22                        | -178.1(4)          |
| N5—Cu2—O8—C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91.9 (3)   | C23—C24—C25—N3                         | 0.9 (6)            |
| N7—Cu2—O8—C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -100.8(3)  | C26—C24—C25—N3                         | 179.4 (3)          |
| O8—Cu2—O10—C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.8 (8)   | O6—C26—C24—C23                         | 153.3 (4)          |
| N5—Cu2—O10—C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -102.0(3)  | Q6-C26-C24-C25                         | -25.2(5)           |
| N7—Cu2—O10—C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91.2 (3)   | N4-C26-C24-C23                         | -26.7(5)           |
| 08—Cu2—N5—C41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -17.6(3)   | N4—C26—C24—C25                         | 154.8 (4)          |
| 08—Cu2—N5—C45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 156.3 (3)  | 08-C27-C28-C29                         | -10.3(5)           |
| O10—Cu2—N5—C41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 152.4 (3)  | 08-C27-C28-C33                         | 168.5 (4)          |
| 010—Cu2—N5—C45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -33.7 (3)  | 09-C27-C28-C29                         | 168.0 (4)          |
| N7-Cu2-N5-C41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -124.1(5)  | 09                                     | -13.2(6)           |
| N7-Cu2-N5-C45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 497(7)     | $C_{30}$ $C_{29}$ $C_{28}$ $C_{27}$    | 177 8 (4)          |
| 08—Cu2—N7—C47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.3 (3)   | C30—C29—C28—C33                        | -1.0(6)            |
| $08-Cu^2-N7-C51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1579(3)   | $C_{28} = C_{29} = C_{30} = C_{31}$    | -0.3(6)            |
| 010-Cu2-N7-C47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -152.0(3)  | $C_{27}$ $C_{28}$ $C_{33}$ $C_{32}$    | -1774(4)           |
| $010 - Cu^2 - N7 - C51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.8 (3)   | $C_{29}$ $C_{28}$ $C_{33}$ $C_{32}$    | 13(6)              |
| $N_{5}$ $U_{12}$ $N_{7}$ $C_{47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1243(5)    | $F_{3}$ $C_{31}$ $C_{30}$ $C_{29}$     | -1792(4)           |
| $N_5 - C_{12} - N_7 - C_{51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -50.9(7)   | $C_{32} - C_{31} - C_{30} - C_{29}$    | 15(6)              |
| Cu1 - 01 - C1 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 2 (5)    | $C_{33}$ $C_{32}$ $C_{31}$ $F_{3}$     | 1.5(0)<br>179 5(4) |
| Cu1 = 01 = C1 = C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1745(2)   | $C_{33}$ $C_{32}$ $C_{31}$ $C_{30}$    | -1.2(6)            |
| Cu1 - 03 - C8 - 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -63(5)     | $C_{31} - C_{32} - C_{33} - C_{28}$    | -0.3(6)            |
| Cu1 - O3 - C8 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 172.4 (2)  | 010-C34-C35-C36                        | -163(6)            |
| Cu2—O8—C27—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -9.5 (5)   | O10-C34-C35-C40                        | 161.8 (4)          |
| Cu2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 168.8 (2)  | 011 - C34 - C35 - C36                  | 165.3 (4)          |
| Cu2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.2 (5)   | 011 - C34 - C35 - C40                  | -16.6(6)           |
| $C_{112}$ = 010 = $C_{12}$ = 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -163 1 (3) | $C_{34}$ $C_{35}$ $C_{40}$ $C_{39}$    | -1787(4)           |
| $C_{\rm H} = - N_{\rm H} = - C_{\rm H} = - C_{\rm$ | -172.5(3)  | $C_{36} - C_{35} - C_{40} - C_{39}$    | -0.6.(6)           |
| C19 - N1 - C15 - C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.2(5)    | $C_{37}$ $-C_{36}$ $-C_{35}$ $-C_{34}$ | -179.8(4)          |
| $C_{11}$ N1-C19-C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 171.8 (3)  | $C_{37}$ $C_{36}$ $C_{35}$ $C_{40}$    | 20(6)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                        |                    |

| C15—N1—C19—C18 | 0.5 (5)    | C35 - C36 - C37 - C38 | -24(6)     |
|----------------|------------|-----------------------|------------|
| Cu1—N3—C21—C22 | 178.9 (3)  | F4—C38—C37—C36        | -178.6(4)  |
| C25—N3—C21—C22 | 0.8 (6)    | C39—C38—C37—C36       | 1.4 (6)    |
| Cu1—N3—C25—C24 | -179.6 (3) | F4-C38-C39-C40        | -180.0 (3) |
| C21—N3—C25—C24 | -1.4 (5)   | C37—C38—C39—C40       | 0.0 (6)    |
| C45—N5—C41—C42 | 2.0 (6)    | C35—C40—C39—C38       | -0.4 (6)   |
| Cu2—N5—C41—C42 | 175.8 (3)  | N5-C41-C42-C43        | -1.7 (6)   |
| Cu2—N5—C45—C44 | -174.8 (3) | C44—C43—C42—C41       | 0.0 (6)    |
| C41—N5—C45—C44 | -0.6 (5)   | C45—C44—C43—C42       | 1.4 (5)    |
| Cu2—N7—C47—C48 | -176.2 (3) | C46—C44—C43—C42       | -174.2 (3) |
| C51—N7—C47—C48 | -1.0 (5)   | C43—C44—C46—O12       | 155.7 (4)  |
| Cu2—N7—C51—C50 | 175.3 (3)  | C43—C44—C46—N6        | -21.1 (6)  |
| C47—N7—C51—C50 | -0.3 (5)   | C45—C44—C46—O12       | -19.9 (5)  |
| O1—C1—C2—C3    | -11.7 (5)  | C45—C44—C46—N6        | 163.3 (4)  |
| O1—C1—C2—C7    | 169.0 (4)  | N5-C45-C44-C43        | -1.1 (6)   |
| O2—C1—C2—C3    | 168.6 (4)  | N5-C45-C44-C46        | 174.8 (3)  |
| O2—C1—C2—C7    | -10.7 (6)  | N7—C47—C48—C49        | 1.2 (6)    |
| C1—C2—C3—C4    | -179.6 (4) | C47—C48—C49—C50       | -0.2 (6)   |
| C7—C2—C3—C4    | -0.3 (6)   | C51—C50—C49—C48       | -0.9 (5)   |
| C1—C2—C7—C6    | -179.8 (4) | C52—C50—C49—C48       | 177.1 (3)  |
| C3—C2—C7—C6    | 0.9 (6)    | C49—C50—C51—N7        | 1.3 (6)    |
| C2—C3—C4—C5    | 0.3 (7)    | C52—C50—C51—N7        | -176.9 (3) |
| C3—C4—C5—F1    | 179.8 (4)  | C49—C50—C52—O13       | -154.6 (4) |
| C3—C4—C5—C6    | -0.9 (7)   | C49—C50—C52—N8        | 25.3 (5)   |
| C7—C6—C5—F1    | -179.3 (4) | C51—C50—C52—O13       | 23.5 (5)   |
| C7—C6—C5—C4    | 1.5 (7)    | C51—C50—C52—N8        | -156.6 (4) |
| C5—C6—C7—C2    | -1.4 (7)   | C56—C57—N9—C53        | 0.1 (6)    |
| O3—C8—C9—C10   | 166.5 (4)  | C54—C53—N9—C57        | 0.4 (6)    |
| O3—C8—C9—C14   | -14.3 (5)  | C56—C55—C54—C53       | 1.4 (6)    |
| O4—C8—C9—C10   | -14.8 (6)  | N9—C53—C54—C55        | -1.1 (6)   |
| O4—C8—C9—C14   | 164.4 (4)  | C54—C55—C56—C57       | -0.9 (6)   |
| C8—C9—C10—C11  | 178.5 (4)  | C54—C55—C56—C58       | 178.5 (4)  |
| C14—C9—C10—C11 | -0.7 (6)   | N9—C57—C56—C55        | 0.1 (6)    |
| C8—C9—C14—C13  | -177.9 (4) | N9—C57—C56—C58        | -179.3 (4) |
| C10-C9-C14-C13 | 1.3 (6)    | O15-C58-C56-C55       | 177.4 (4)  |
| F2-C12-C13-C14 | -179.8 (4) | N10-C58-C56-C55       | -1.4 (6)   |
| C9—C10—C11—C12 | -0.1 (6)   | O15-C58-C56-C57       | -3.3 (6)   |
| F2-C12-C11-C10 | -179.6 (4) | N10-C58-C56-C57       | 177.9 (4)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|----------------------------|-------------|-------|--------------|------------|
| N2—H2A…O18                 | 0.86        | 2.10  | 2.929 (6)    | 163        |
| N2—H2B···O4 <sup>i</sup>   | 0.86        | 2.13  | 2.914 (5)    | 150        |
| N4—H4A…O18 <sup>ii</sup>   | 0.86        | 2.27  | 3.090 (6)    | 160        |
| N4—H4B…O4 <sup>iii</sup>   | 0.86        | 2.12  | 2.909 (5)    | 152        |
| N6—H6A···O21 <sup>iv</sup> | 0.86        | 2.00  | 2.849 (5)    | 169        |
| N6—H6B…O9 <sup>v</sup>     | 0.86        | 2.18  | 2.925 (4)    | 145        |

| N8—H8A…O16                     | 0.86     | 2.44     | 3.285 (5) | 167     |
|--------------------------------|----------|----------|-----------|---------|
| N8—H8B····O9 <sup>vi</sup>     | 0.86     | 2.07     | 2.890 (4) | 160     |
| N10—H10A…O7                    | 0.86     | 2.20     | 3.031 (5) | 163     |
| N10—H10B…O12 <sup>vii</sup>    | 0.86     | 2.10     | 2.897 (5) | 155     |
| O7—H71…O13 <sup>vii</sup>      | 0.92 (3) | 1.85 (3) | 2.762 (4) | 174 (3) |
| O7—H72···O14 <sup>vii</sup>    | 0.81 (5) | 2.02 (5) | 2.824 (4) | 174 (3) |
| O14—H141…N9                    | 0.93 (4) | 1.93 (4) | 2.812 (4) | 158 (4) |
| O14—H142····O5 <sup>viii</sup> | 0.93 (3) | 1.85 (3) | 2.782 (4) | 177 (5) |
| O16—H161…O19                   | 0.60 (4) | 2.26 (3) | 2.845 (6) | 164 (8) |
| O17—H172···O6 <sup>ix</sup>    | 0.73 (5) | 2.21 (5) | 2.887 (5) | 156 (5) |
| O18—H182····O17 <sup>x</sup>   | 0.63 (6) | 2.30 (6) | 2.839 (6) | 145 (7) |
| O19—H191…O13                   | 0.74 (5) | 2.06 (5) | 2.800 (6) | 172 (5) |
| O20—H201…O18 <sup>viii</sup>   | 0.77     | 2.07     | 2.611 (6) | 128.    |
| O20—H202…O15                   | 0.64     | 2.14     | 2.710 (5) | 149.    |
| O21—H211…O2                    | 0.91 (3) | 1.91 (3) | 2.807 (4) | 169 (4) |
| O21—H212···O16 <sup>xi</sup>   | 0.89 (4) | 1.88 (5) | 2.759 (5) | 168 (5) |
| C4—H4···Cg9 <sup>xii</sup>     | 0.93     | 2.81     | 3.555 (4) | 138     |
| C29—H29····Cg9 <sup>xii</sup>  | 0.93     | 2.55     | 3.361 (5) | 146     |

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) x, y+1, z; (iii) -x, y+1/2, -z+1/2; (iv) -x, -y+1, -z+1; (v) -x+1, y+1/2, -z+3/2; (vi) -x+1, y-1/2, -z+3/2; (vii) x, -y+1/2, z-1/2; (viii) x, -y+1/2, z+1/2; (ix) -x+1, -y+1, -z+1; (x) -x+1, -y, -z+1; (xi) -x, -y, -z+1; (xii) x, -y-1/2, z-3/2.



Fig. 1