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1. Introduction
Mesenchymal stem cells (MSCs) are self-renewing and 
multipotent cells, which have the potential to differentiate 
into various tissue cells, including osteoblasts (1,2), 
adipocytes, chondrocytes (3), neurons, glia cells (4), and 
cardiomyocytes (5), under favorable conditions. Owing 
to this potential, MSCs are being increasingly investigated 
for their use in cell-based regenerative medicine and tissue 
engineering (6).

In recent years, MSCs have been reported to be 
isolated from various tissues, including adipose tissue, 
cartilaginous tissue, muscles, tendons, the periodontal 
ligament, synovial membranes, trabecular bone and bone 
marrow, umbilical cords, placentas, the nervous system, 
skin, the periosteum, fetal liver, and dental pulp (7–9).

The umbilical cord (UC), which is of varying length in 
different species, is a transparent flexible tissue externally 
surrounded by the amniotic membrane and composed of 
three blood vessels, including two arteries and one vein, 
which are encapsulated by a mucous connective tissue 
referred to as Wharton’s jelly (10). Although the umbilical 
cord appears to be homogeneous at macroscopic level, it 
has been shown to comprise three compartments on the 
basis of the proliferation and differentiation characteristics 
determined for expanded stromal cells. These 

compartments are the subamniotic stroma, intervascular 
stroma, and perivascular stroma (11).

UC-derived MSCs can be isolated from Wharton’s 
jelly, the perivascular stroma, and the subamniotic 
membrane (10,12). Human UC-derived MSCs offer 
several advantages, including their isolation being easier, 
noninvasive, and less contentious when compared to that 
of MSCs isolated from the bone marrow and adipose 
tissue, as well as their contamination risk being lower and 
their differentiation and immunomodulatory capacity 
being higher (13). 

Although several studies have been carried out to 
demonstrate various features of these cells, including 
their phenotypic characteristics and plasticity, the number 
of studies available on the ultrastructure of MSCs is 
rather limited. This study was aimed at determining the 
plasticity of UC-derived MSCs isolated from the rat and 
also at demonstrating, for the first time, the ultrastructural 
characteristics of these cells in detail. 

2. Materials and methods
2.1. Isolation and expansion of umbilical cord-derived 
mesenchymal stem cells
UC samples were collected from the fetuses of pregnant 
Wistar albino rats under general anesthesia. Immediately 
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after the removal of the umbilical arteries and vein, the 
remaining tissue parts were transferred under aseptic 
conditions to a sterile petri dish containing Dulbecco’s 
modified Eagle’s medium (DMEM) (Lonza, Belgium) and 
antibiotics (100 µg/mL penicillin, 10 µg/mL streptomycin, 
and 250 µg/mL amphotericin B; Invitrogen Life Sciences, 
USA). After being mechanically cut into smaller pieces, the 
tissue explants were transferred to a T25 culture flask and 
maintained in an incubator for 15 min in an atmosphere 
of 5% CO2 at 37 °C. This was followed by incubation in 
a medium containing 20% fetal calf serum (Lonza); 2% 
L-glutamine (Lonza); 1% penicillin, streptomycin, and 
amphomycin (Biological Industries, Israel); and 77% 
DMEM (Lonza). The medium was renewed every 3 days 
and nonadherent cells were removed. At approximately 
70% confluency, the adherent MSCs were passaged with 
0.25% trypsin in PBS, counted, and plated again. Plated 
cells were monitored during the first expansion period for 
several days before the first passage. Cell plating density 
was calculated at 3 × 104 cells per square centimeter in the 
first passage. Total viable cells per sample were counted 
using trypan blue dye. The cells were grown until the third 
passage. The trial was conducted with the permission of 
the Board of Ethics in Animal Experiments of Ankara 
University (2016-4-35).
2.2. Differentiation protocol 
In order to characterize the harvested cells at the third 
passage, the cells were stimulated into osteogenic, 
adipogenic, chondrogenic, and neurosphere differentiation 
in a monolayer culture. For osteogenic, adipogenic, 
chondrogenic, and neurosphere differentiation, the cells 
were seeded into a six-well plate at a density of 5.0 × 104 
cells/cm2.

For osteogenic differentiation, an osteocyte 
differentiation basal medium consisting of low-glucose 
DMEM, 0.05 mM ascorbate-2-phosphate, 100 nM 
dexamethasone, and 10 mM sodium β-glycerophosphate 
(GIBCO, USA) was used. The cells were expanded in a 
monolayer culture for a period of 3 weeks and the medium 
was renewed every 3 days.

For adipogenic differentiation, the cells were induced 
for 18 days. The cells were first cultured in an adipogenic 
induction medium containing standard medium high-
glucose DMEM (10% fetal bovine serum (FBS)), 0.5 
mM 3-isobutyl-1-methylxanthine, 1 µM dexamethasone, 
10 µg/mL insulin, and 0.5 mM indomethacin (GIBCO) 
for 72 h. Later, the cells were exposed to an adipogenic 
maintenance medium for 2 days. This treatment cycle was 
repeated twice. 

For chondrogenic differentiation, the cells were 
induced for 18 days in standard medium high-glucose 
DMEM containing 6.25 µg/mL insulin-transferrin-
selenous acid, 0.1 mM ascorbate-2-phosphate, 10–7 M 

dexamethasone, 1.25 mg/mL bovine serum albumin, 5000 
IU/mL penicillin, 5000 µg/mL streptomycin, 50 µg/mL 
ascorbate 2-phosphate, 100 nM dexamethasone, and 10 
ng/mL human transforming growth factor.

For neurosphere differentiation, the culture medium 
in the flask was aspirated and the cells were washed 
with Hanks’ balanced salt solution. After the cells were 
incubated in a trypsin-EDTA solution for 5 min, the 
enzymatic reaction was terminated by adding FBS and 
the mixture was transferred into 15-mL tubes to be 
centrifuged at 250 × g for 10 min. After the supernatant 
was discarded, the cells were suspended in a serum-free 
culture medium (DMEM/HAM F12 supplemented with 
insulin, transferrin, and selenium (ITS-X 1%); EGF (50 
ng/mL); FGF2 (50 ng/mL); and 1% pen/strep) and seeded 
into 25-cm2 flasks coated with poly-D-lysine.
2.3. Histochemical staining
The differentiation of cells into the adipogenic, osteogenic, 
and chondrogenic lineages was demonstrated using 
different histological staining techniques. The von Kossa 
staining method (Merck, Germany, Lot HC392067) showed 
the deposition of minerals in the osteogenic cultures. 
Adipogenic differentiation was evaluated using Oil Red O 
stain (Sigma Aldrich, USA, Lot SLBC9102V) on the basis 
of lipid droplet accumulation in the cell cytoplasm. Alcian 
Blue (pH 2.5) (Millipore, USA, Lot 2496226) staining was 
used to show chondrogenic differentiation on the basis of 
the production of a ground substance matrix. 
2.4. Ultrastructure analysis by transmission electron 
microscopy (TEM)
In order to evaluate the ultrastructure of the UCs, the cells 
at passage three were fixed immediately upon harvesting in 
2% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) at 4 
°C for 2 h. The cells were rinsed in 1 M sodium cacodylate 
(195 mOsm, pH 7.4) four times for 1 h and postfixed in 
2% osmium tetroxide in 0.5 M sodium cacodylate buffer 
for 2 h. Subsequently, the cells were dehydrated in graded 
ethanol, passed through propylene oxide, and embedded 
in Epon-araldite (EMS, Germany) using an automated 
tissue processor. Thin sections were stained with uranyl 
acetate and lead citrate with an automated staining 
machine (Leica, Germany). The sections were examined 
under a transmission electron microscope (JEOL, Japan, 
JEM1400) and photographed with a Gatan Orius SC 200 
W CCD camera. Electron micrographs were taken at 
original magnifications of 4000× to 21,000× and enlarged 
photographically as desired.

3. Results
3.1. Expansion period and differentiation of UCs into 
mesenchymal lineages and neuronal lineage
Fibroblast-like spindle-shaped cells were observed at 
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36–48 h after incubation, starting from the peripheral 
area of the UCs expanded by the explant culture method. 
Homogeneous and symmetrical colonies, which had 
adhered to the plastic surface, were observed on days 
6–7. The cells forming these colonies were observed to be 
morphologically similar to the mesenchymal stem cells of 
the bone marrow. The colonies reached a confluency of 
80%–90% at the end of the first week. A total of 2.7 ± 0.5 
× 106 viable cells per sample were obtained after the first 
expansion period.

The colonies of the cells induced for osteogenic 
differentiation displayed dents comprising amorphous 
aggregates from day 9. The number and distribution of 
these dents reached a maximum at the end of the second 
week. The von Kossa staining method confirmed these 
dents to be calcium deposits. 

The cells of the colonies induced for adipogenic 
differentiation started to display an ovoid morphology 
from days 11–13, and lipid droplets were observed in the 

periphery. At the end of the third week, the cells were 
stained with Oil Red O to demonstrate their adipogenic 
differentiation. In the colonies induced for chondrogenic 
differentiation, the presence of nodules secreting cartilage-
specific proteoglycans, which were observed from day 19, 
was demonstrated by Alcian Blue staining (Figure 1).

Neurosphere formation was observed from 24 h 
after the induction of the colonies into neurosphere 
differentiation. From 72 h, the neurospheres were observed 
to disappear in the culture medium. The optimum timing 
for the harvesting of the neurospheres was determined to 
be the 40th hour (Figure 2).  
3.2. Ultrastructural characteristics of the UCs
TEM revealed that the UCs had a rather large, eccentrically 
located, polymorphic, lobulated euchromatic nucleus and 
a distinct nucleolus. These morphological features were 
typically indicative of high transcriptional activity, or in 
other words ongoing protein synthesis in the nucleus. 
In general, the cells displayed a spheroid polygonal 

Figure 1. A) The cultured MSCs showing colony forming unit fıbroblast (CFU-U) morphology B) Chondrogenic differentiation 
with Alcian Blue showing glycosaminoglycans. C) Adipogenic differentiation with Oil Red O stain showing fat vacuoles 
throughout the culture. D) Osteogenic differentiation with von Kossa showing calcium deposition in cultures.
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morphology. The cytoplasm was rich in organelles and 
contained abundant mitochondria, Golgi complexes, free 
ribosomes, and polysomes. Particularly in the periphery 
of the nucleus, the presence of a highly organized 
and enlarged granular endoplasmic reticulum was 
noteworthy. While it was observed that the organelles were 
concentrated to a greater extent in the cytoplasmic area 
surrounding the nucleus, the rest of the cytoplasm showed 
the opposite situation. Almost all cells were observed 
to have synthesized vesicles that displayed a peripheral 
distribution. The cell membrane had multiple pseudopod-
like protrusions, which enabled the adherence of the 
cells to the surface of the flask. These structures, which 
contained multiple vesicles, were organized particularly 
in the areas where the cells came into contact with each 
other. In these contact areas, focal points of adhesion were 
observed on the neighboring pseudopod-like protrusions. 
Furthermore, neither glycogen nor lipid vacuoles or 
contractile filaments were observed in the periphery of the 
cells (Figure 3).

4. Discussion
UC-derived MSCs have been investigated in depth by 
several researchers in view of the multiple advantages 
they offer, including their isolation being easier and 
ethically and legally less contentious, their bacterial and 
viral contamination risk being low, their lacking MHC 
II expression, and their capacity of differentiating into 
cells originating from all three of the embryonic germ 
layers (6,10,14–16). Furthermore, it has been reported 
that mesenchymal stem cells derived from the UC 

stroma provide a major advantage in cell-based therapy 
in cases where there is a need for the expansion of a high 
number of cells (6,17). On the other hand, research on 
the ultrastructural morphology of these cells is rather 
scarce. This scarcity is ascribed to the expansion of cells by 
cell culture for electron microscopy being laborious and 
requiring experience. A study carried out in 2015 showed 
that exosomes, which are small membrane-bound vesicles 
synthesized by MSCs, are involved in wound healing 
as they activate the signalization pathways (18). This 
involvement requires the demonstration of the detailed 
ultrastructure of these cells. In this study, the ultrastructure 
of mesenchymal stem cells, which were isolated from 
the subamniotic stroma of rat UC by the explant culture 
method, was investigated for the first time by TEM. 

It has been reported that the enzymatic digestion 
method, which is frequently used for the isolation of 
UC-derived MSCs, damages the cellular junctions, 
increases cellular heterogeneity, and alters the immune 
phenotype (19). On the other hand, the explant culture 
method is known to maintain cell uniformity and to 
facilitate the expansion of a high number of cells (20,21). 
A widely accepted protocol has not yet been developed 
for the employment of this method. In this study, the 
explant culture method was employed on the basis of 
the experience of the researchers such that the cellular 
junctions were protected to ensure the generation of 
more reliable ultrastructural findings. For this purpose, 
the blood vessels, perivascular stroma, and intervascular 
stroma were dissected and eliminated to the largest extent 
possible. In this study, only a certain part of the UC was 

Figure 2. MSC differentiation into neurosphere (arrowheads).
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able to be assessed, and currently there is no definitive 
information available on whether the different regions of 
the UC differ in their differentiation capacity. However, in 
a study on the comparative evaluation of MSCs isolated 
from different regions of the UC, it was demonstrated that 
the osteogenic differentiation capacity of MSCs isolated 
from Wharton’s jelly was lower (22). Furthermore, it has 
been reported that, owing to the possibility of it containing 
endothelial cells originating from blood vessels, Wharton’s 
jelly increases the heterogeneity of culture medium (23). 

TEM is a method that enables the examination of cell 
morphology at an ultrastructural level and yields detailed 
and valuable findings that are considered to be the gold 
standard (24). To date, the MSCs that have been most 
frequently investigated for their fine structure are bone 
marrow-derived MSCs. The most characteristic features 
of these cells are their euchromatic nucleus and widely 

distributed and enlarged endoplasmic reticulum in the 
cytoplasm (17,25). A similar morphology was observed 
in rat UC-derived MSCs in the present study, which was 
considered to be a cellular adaptation to ensure the supply 
of proteins required for the growth and differentiation 
of these cells. In their study aimed at the investigation of 
MSCs isolated from the stroma of the human UC by TEM, 
Qiao et al. (26) reported the observation of two types of 
cells displaying different morphological features on the 
basis of their being in the active or passive metabolic 
period. The cells in the active period contained one nucleus 
or two nuclei in a single cell and displayed a cytoplasmic 
structure, rich in organelles, while the cells in the passive 
period contained a single round or oval-shaped nucleus 
and presented a smaller number of organelles. These results 
may have arisen from the researchers having isolated the 
MSCs using different methods and from the different 

Figure 3. A) Eccentrically located polymorphic, lobulated nucleus (N) and granular endoplasmic reticulum (red arrowheads). B) 
Euchromatic nucleus (N) and enlarged granular endoplasmic reticulum (red arrowheads). C) Pseudopod-like protrusions (blue 
arrowheads). D) Focal points of adhesion between cells (yellow arrowheads), multiple vesicles (green arrowheads).
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regions of the UC. The observation of cells in different 
metabolic periods at the ultrastructural level could be a 
result of an increase in cell heterogeneity, depending on 
the method used. In light of this, it could be suggested that 
when isolating MSCs from the UC, the selection of the 
isolation site bears significance for the purpose sought. 

In the present study, in which mesenchymal stem 
cells were isolated for the first time from the stroma 
of the rat UC by the explant cell culture method, the 

detailed ultrastructural morphology of these cells was 
demonstrated. The results obtained in the present study 
showed that MSCs could be easily isolated from the UC 
and further expanded in culture media. It was concluded 
that the use of these cells, which have a high potential of 
differentiating into all of the three embryonic germ layers 
and display high growth potential, could be advantageous 
in cell-based therapy.
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