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a b s t r a c t

We developed an inexpensive computer vision-based method utilizing an algorithm which differentiates
drug-induced behavioral alterations. The mice were observed in an open-field arena and their activity
was recorded for 100 min. For each animal the first 50 min of observation were regarded as the drug-free
period. Each animal was exposed to only one drug and they were injected (i.p.) with either amphetamine
or cocaine as the stimulant drugs or morphine or diazepam as the inhibitory agents. The software divided
the arena into virtual grids and calculated the number of visits (sojourn counts) to the grids and instanta-
neous speeds within these grids by analyzing video data. These spatial distributions of sojourn counts and
instantaneous speeds were used to construct feature vectors which were fed to the classifier algorithms
for the final step of matching the animals and the drugs. The software decided which of the animals were
drug-treated at a rate of 96%. The algorithm achieved 92% accuracy in sorting the data according to the
Automatization
increased or decreased activity and then determined which drug was delivered. The method differenti-
ated the type of psychostimulant or inhibitory drugs with a success ratio of 70% and 80%, respectively.
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. Introduction

Behavioral studies in biological research are mostly based on
he observation and evaluation of motor activity of animals in
xperimental models. Recording locomotion in the open field or
n arena is widely used to investigate the behavioral alterations
f the animals in response to therapeutic interventions, genetic
utations and for evaluation of behavioral responses to psychoac-

ive drugs. A variety of methods are available to measure motor
ctivity. Conventional and widely used photobeam apparatus mon-
tors horizontal and vertical locomotor activity, area entries, and the
ccurrence of different activities, such as rearing. The system gen-
rates a signal when an animal interrupts the infrared light and
uitable arrangement of sensors register movements in the desired
irection. The standard photobeam apparatus has been used for
ecording motor activity for preclinical drug evaluation (Beninger et
l., 1985; Clarke et al., 1985; Teicher et al., 1996; Robles, 1990). Some

rawbacks of this system were eliminated by continuous-wave
oppler radar (CWDR) as an alternative to the standard photobeam
ox (Pasquali and Renzi, 2005). Multilayer feed-forward neural net-
orks, which are fed with the power spectrum estimation and Root
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Mean Square (RMS) values of these signals, helped them to clas-
sify the behavior as exploring, grooming and sedation. Drai et al.
(2000), using data measured by a standard photobeam tracking
system introduced an algorithm that segments rodent locomotor
behavior and demonstrated the effects of amphetamine and phen-
cyclidine in rats. Other than force sensors, infrared photobeam
recording and CWDR, video capturing has been used in tracking
rodent motion in behavioral studies (Noldus et al., 2001; Vorhees
et al., 1992).

Computer systems utilizing suitable software are employed to
analyze digital video recordings of the activity of experimental ani-
mals to evaluate their behavior. Automated observation with video
capturing presents significant advantages over previous meth-
ods. In these methods, animal behavior is recorded more reliably
because the computer algorithm is not subjective, and it is not
prone to operator bias. In contrast to visual observation, video
tracking may also perform pattern analysis on a video image of
the observed animal and derive quantitative measurements of the
behavior (Noldus et al., 2001). Automated observation using video
tracking is particularly suitable for recording locomotor activity.

Activity is expressed as spatial measurements of distance travelled,
speed, and acceleration (Buresova et al., 1986; Dielenberg et al.,
2006; Spruijt and Gispen, 1983; Spruijt et al., 1998). In a recent study
Shih and Young (2007) reported a combination of an accelerometer
and video camera system to simultaneously measure vibration and
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ocomotion activity and compared the effects of amphetamine and
entobarbital.

Discrimination of variations in the locomotor activity is
mportant in behavioral studies. A system which is capable of
etecting behavioral alterations in response to pharmacologi-
al manipulations could prove very useful in behavioral and
europharmacological studies, as well as in drug screening and tox-

cology studies. Thus, the present study was conducted to develop
n automated system for recording and analyzing the locomotor
ctivity of mice in response to pharmacological manipulation. We
resent here a video tracking method which utilizes an algorithm
o detect and discriminate drug responses elicited by diverse phar-

acological groups. In order to evaluate the method employed we
ested typical pharmacological agents with well-described behav-
oral effects. We used amphetamine and cocaine as the stimulant
rugs and diazepam and morphine as the inhibitory agents. Our
ain contribution lies in the construction of the feature vectors
hich represent the behavior of the subject in such a way that the

ehavioral distinctions are preserved and displayed clearly.

. Materials, methods, and results

.1. Animals

Male albino mice weighing 30–35 g were used in these exper-
ments. Mice were housed in groups of three per cages in a
emperature-controlled room (23 ± 1 ◦C) with a relatively humid-
ty of 45–70% and kept in a 12 h:12 h light/dark cycle (illuminated
etween 1800 and 0600 h). Access to food and water was unre-
tricted. The methods and procedures of the present study
ere approved by the ethics committee of Hacettepe University

2008/71-4).

.2. Drugs

D-Amphetamine hydrochloride and diazepam were obtained
rom Sigma Chemical Co. (USA), whilst cocaine hydrochloride
nd morphine hydrochloride were obtained from Etablissements
oques, France and Verenigde Pharmazeutische Fabriken, Holland,
espectively. All drugs were dissolved in saline.

.3. Open field measurements

Mice were taken one at a time from their standard home cages,
eighed and marked. Then animals were transferred to the open
eld apparatus and their video images were recorded as they
xplored. The open field consisted of a square base, 45 cm × 45 cm
ith glass walls 45 cm high. The floor of the arena was painted matt

lack, and the arena was illuminated by means of an incandescent
amp of 40 W, positioned above the base providing a homogeneous
llumination in the arena. The arena was located in a dark room
nd it is kept away from odor or sound. An adjustable surveillance
amera (Fly WC-OML300, China) was positioned 60 cm above the
ase of the arena and was connected to a personal computer. The
ehaviors of the mice were recorded at a frame rate of 10 Hz.

In this study, 29 animals were divided into five groups. For each
nimal, video images were recorded in two following sessions. In
he first session, baseline activity of the mice was recorded for
0 min without drug administration. Immediately after this session,
nimals received an injection of cocaine, amphetamine, diazepam,
r morphine and were placed back into the arena for another
0 min. Each animal was used only once for each drug. All injec-

ions were given intraperitoneally (i.p.) in a volume of 10 ml/kg.
ll the drugs were dissolved in saline and were administered
t doses of 10 mg/kg for cocaine (n = 6), 10 mg/kg amphetamine
n = 6) 10 mg/kg morphine (n = 6) and 10 mg/kg diazepam (n = 6).
he initial 10 min of each session were discarded. During this
Methods 180 (2009) 234–242 235

period animals resumed their baseline locomotor activity following
manipulation.

2.4. Statistical analysis

Within group comparisons among baseline and post-treatment
activities were made using two-way ANOVA. P value of less than
0.05 was considered statistically significant.

2.5. Data analysis

Data analysis method composed of mainly two stages: (i) behav-
ior representation step, which includes motion tracking and feature
extraction, and (ii) classification step, where the videos are labeled
according to the animals behavioral differences.

2.5.1. Drug-induced alteration in locomotion
Prior to the evaluation of psychotropic drug effects we studied

the effects of saline injection. Six separate mice injected with saline
did not display altered locomotor activity and their cumulative trav-
elled distance curves overlapped before (baseline) and after the
injections (Fig. 1A inset). Then we compared the effects of drugs
with their untreated (baseline) activity. Examination of the video
recordings and cumulative travelled distances (Fig. 1) revealed
that amphetamine (P < 0.006) and cocaine (P < 0.03) increased loco-
motor activity compared to the pre-drug control period, while
morphine (P < 0.01) and diazepam (P < 0.04) inhibited locomotion.
However, amphetamine- and cocaine-induced increased locomotor
activity exhibited different characteristics. Following administra-
tion of both amphetamine and cocaine the animals displayed
accelerated movement and the distance they travelled significantly
increased with respect to the controls (Fig. 1A). Amphetamine-
administered animals preferentially moved along the edges of the
arena, while cocaine-treated animals moved throughout the arena
including the central reagents, displaying a motion of more dis-
tributed nature (Figs. 2 and 3). Morphine and diazepam inhibited
locomotion (Fig. 1B), however this inhibition also displayed differ-
ent characteristics (Figs. 2 and 3). Under the influence of morphine,
the animals mostly remained sedated in one restricted area, gen-
erally located near the corners of the arena. Diazepam-treated
animals also remained sedated but to a lesser extent and they
appeared slightly more active around the edges of the arena, with
respect to the morphine group.

Based on these observations, we developed a hierarchical
scheme to differentiate the administered drugs by analyzing the
video of the mouse under the influence of a given drug. The struc-
ture of the hierarchical classification (HC) scheme is illustrated in
Fig. 4A. In Step 1, it is investigated whether the animal is exposed
to drugs used in this study or it exhibits a drug-naïve behavior. If
the mouse is detected to be drug-naïve, no further investigation
is performed. If the animals’ activity is different from drug-naïve
condition, then the animal is considered to be drug-treated. In Step
2, the data is classified as increased or decreased, according to the
activity of the mouse. Finally at Step 3 the activity was analyzed
separately depending on its type and the final decision was reached
considering the previously acquired drug characteristics.

Behavioral analysis is composed of motion tracking and feature
extraction steps. In the motion tracking step, the location of the
animal is determined at each video frame. Feature extraction step
uses this information in two stages to represent the area explored by
the animal and the speed of the motion which provides distinctive
characteristics for behavioral analysis.
2.5.2. Motion tracking algorithm
In order to track the motion of the animal, a video of N frames is

recorded, with each video frame Fn, 1 ≤ n ≤ N, consisting of M × M
pixels. The path followed by the animal is found by positioning the
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Fig. 1. Cumulative distances travelled by mice in the open-field arena before and after psychotropic drug treatment. (A) amphetamine (P < 0.006) and (B) cocaine (P < 0.03)
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njections significantly increased the distance travelled, whilst (C) diazepam (P < 0
redrug locomotor activity. Distance curves obtained from control group of mice d
dministered 10 mg/kg amphetamine, 10 mg/kg cocaine, 1 mg/kg diazepam and 10
ravelled ± SEM over the 40 min of test period.

ocation of the subject in each frame. For this purpose, first, a back-
round model, which we refer as BG, is constructed by recording an
mage of the empty arena before the animal is placed. The location
n each frame is then found by subtracting the background model
G, from each frame Fn and then marking the pixels different from
he background. This process first requires the construction of a dif-
erence image Dn obtained by subtracting the background model BG
rom Fn for each frame. For p = (xp, yp) denoting a pixel on the arena,
difference image Dn(p) is found as

n(p) = Fn(p) − BG(p), 1 ≤ n ≤ N, ∀p.

In order to remove the noise and discriminate the animal from
he arena, a threshold � is applied to the pixel values in Dn, to obtain
black and white image In, as{

1 if Dn(p) > �,

In =

0 if Dn(p) < �,

n = 1, . . . , N, ∀p ∈ Dn.

n In, black represents the test arena, and white represents the sub-
ect. The center of gravity of the white area in frame n, which we
d (D) morphine (P < 0.01) decreased the distances with respect to their 40 min of
t display significant difference before and after saline injection (inset). Mice were
morphine (n = 6 per group). Data were expressed as the mean cumulative distance

refer as Cn, is then considered as the location of the animal to be
used in tracking the path.

2.5.3. Formation of basic features
To represent the discriminative characteristics of the animal’s

motion numerically, we calculated two basic features for each pixel,
sojourn count (SC) and mean instantaneous speed (MIS). For a partic-
ular pixel at location p on the arena, vn(p) denotes the presence of
a visit of the animal to that location at frame n, such that

vn(p) =
{

1 if p = Cn,
0 otherwise.

That is, if the center of weight of the mouse at frame n, Cn, is
on pixel p, then there is a visit to that pixel at frame n. The sojourn
count of a pixel p is then defined as the number of all visits to that
pixel through the entire video sequence, that is
SC(p) =
∑
n ∈ N

vn(p).

Similarly, for a particular pixel pi = (xpi
, ypi

), the mean instan-
taneous speed is the mean value of the displacement values
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ig. 2. Representative samples of the distribution of sojourn counts of mice prior an
he grids on the arena of 30 × 30 grids. Sojourn counts were calculated by the summ
f visits to the grids before (right column) and after (left column) (A) amphetamine
reatment. Each graph displays the results of 40 min of video recording.

riginating from pi at any frame n, and moving to pj = (xpj
, ypj

)
hich is the pixel that the center of weight is located on the next

rame n + 1. Thus MIS(pi) is calculated as
IS(pi) = 1
SC(pi)

∑
n st
Cn = pi

dn(pi),
r psychotropic drug administration. Each figure depicts the total number of visits to
of all the visits to each pixel located within the grid (14 × 14 pixels). Total number

g/kg), (B) cocaine (10 mg/kg), (C) diazepam (1 mg/kg), and (D) morphine (10 mg/kg)

where the displacement value dn(pi) for point pi at a particular
frame n is calculated as∣√ ∣

dn(pi) =

∣∣∣ (xpi
− xpj

)2 + (ypi
− ypj

)2
∣∣∣ , pi = Cn, pj = Cn+1.

The arena consists of M × M pixels, for M being 420. When SC and
MIS are calculated for each pixel, a sparse representation is obtained
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Fig. 3. Cumulative instantaneous speeds of mice in each grids they visited. Sample instantaneous speeds for (A) amphetamine-, (B) cocaine-, (C) diazepam-, and (D) morphine-
treated test subjects. Ampetamine and cocaine both increased the speed of animals. The spreading of activity after cocaine was more homogeneous than in amphetamine
group. Diazepam treatment slowed down the animals and they preferred to move at the edges of the arena while morphine treatment resulted in a more rebust decrease in
locomotor activity and mice mostly displayed activity at the corners.
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Fig. 4. (A) Steps of Hierarchical Classification algorithm. (B) Locatio

ince it is not very likely that the animal will visit a specific pixel.
n order to reduce the noise and to obtain a denser representation,
e divided the arena into W × W grids, each grid containing w × w
ixels, and obtain the features from the groups of pixels in each grid
Fig. 4B).

Let guv, 1 ≤ u, v ≤ W , be a grid on the arena consisting of w × w
ixels such that

uv = {p|(u − 1)w ≤ xp < uw, (v − 1)w ≤ yp < vw}.
The sojourn count for a grid guv is then defined as the sum of the

ojourn counts of the pixels in the grid as

C(guv) =
∑

∀p ∈ guv

SC(p).

The MIS of a grid guv is defined as the average of the mean instan-
aneous speed of the pixels for that grid

IS(guv) = 1
SC(guv)

∑
∀p ∈ guv

MIS(p).

.5.4. Formation of complex features
We observed that under the influence of the psychotropic drugs

mployed in this study the animals displayed different locomo-
or activity distribution characteristics. In order to further analyze
nd differentiate behavioral characteristics we focused on behav-
oral patterns on local regions of the arena such as corners, edges
nd centers (Fig. 1B). The corners are represented by C1, C2, C3,
4, each consisting q × q grids. Edges are denoted by E1, E2, E3, E4
overing q × (W − 2q). The central region with (W − 2q) × (W − 2q)
rids denoted by M. Then we grouped and combined the basic fea-
ures according to the stated structure. The feature vector for C1
n terms of the basic features falling in this region is defined as
ollows:

C(C1) =
⌊

SC(g11) SC(g12) · · · SC(g1q) SC(g21) · · ·SC(gqq)
⌋

.

he aggregate information for the corners and edges are obtained
y aligning and adding the corresponding portion of the sojourn
ount and mean instantaneous speed matrices,

SCC = SC(C1) + SC(C2) + SC(C3) + SC(C4),

MISC = MIS(C1) + MIS(C2) + MIS(C3) + MIS(C4),

SCE = SC(E1) + SC(E2)T + SC(E3)T + SC(E4),

MISE = MIS(E1) + MIS(E2)T + MIS(E3)T + MIS(E4),

SCM = SC(M),
MISM = MIS(M),

here for each Ck, the matrices SC(Ck) and MIS(Ck) contain the
ojourn count and mean instantaneous speed values of the pixels,
espectively. SC(Ek) and MIS(Ek) are defined for 1 ≤ k ≤ 4.
borders of three main regions used in the open field experiments.

2.5.5. Feature vectors for drug-treated and -untreated
classification of HC

We regarded as a collection of SC and MIS information of C, E,
and M when the video was labeled as drug-treated or untreated.
The activity in regions C, E, and M using the mean and standard
deviation of sojourn counts and mean instantaneous speeds are:

�I(C) = [�(SCC ) �(SCC ) �(MISC ) �(MISC )],

�I(E) = [�(SCE) �(SCE) �(MISE) �(MISE)],

�I(M) = [�(SCM) �(SCM) �(MISM) �(MISM)],

where functions �(·) �(·) give the mean and standard deviation. The
collection of these three vectors, VI , composed the feature vector of
a particular video for classification Step 1,

VI =
⌊

vI(C) vI(E) vI(M)
⌋

.

2.5.6. Feature vectors for increased–decreased activity
classification of HC

In this step, absolute changes in the behavioral patterns were
used and new features were constructed to display behavioral
differences between naïve and drug-treated animals. The feature
vectors for naïve and drug-treated recordings at the first level of
classification were labeled as VI

N and VI
T . Then, the difference of

vectors was constructed as

VII = VI
T − VI

N,

and checked whether VII exhibits an increased or decreased activity.
VII is labeled as VII

E or VII
I , depending on whether the detection is an

increase or a decrease in activity.

2.5.7. Feature vectors for drug determination step of HC:
amphetamine–cocaine and morphine–diazepam classifications

The videos labeled as VII
E were further labeled as amphetamine-

or cocaine-treated so that the exact drug tag will be determined.
Following Step 2 classifier labeling VII as VII

E , the Step 3 classi-
fier decided whether the animal is morphine-or diazepam-treated.
Since morphine and diazepam both inhibited locomotor activity,
only a small part of the arena provided behavioral information. Fea-
ture vectors were changed to display activity around the center. If
the maximum of the sojourn counts appears at the grid gu∗v∗ , where
1 ≤ u∗, v∗ ≤ W , we focused on an � × � sub-arena around grid gu∗v∗

on the sojourn count and mean instantaneous speed matrices. The
sub-arena, denoted by r*, is the set of grids

r∗ =
{

g : u∗ − � ≤ u ≤ u∗ + � − 1, v∗ − � ≤ v ≤ v∗ + � − 1
}

.
uv 2 2 2 2

The sub-arena r* is divided into 9 sub-regions r∗
ij

of equal size where
1 ≤ j ≤ 3. The sojourn count SC(r∗

ij
) for a particular sub-arena r∗

ij
is

defined to be the sum of the sojourn counts within that sub-region.



2 scienc

T
a
s

f
i
p
a

V

c

V

T
t

2

L

F
s

40 Z. Yucel et al. / Journal of Neuro

he mean instantaneous speed value MIS(r∗
ij
) of a particular sub-

rena r∗
ij

is defined similarly to be the average of mean instantaneous
peed values of the pixels falling into that sub-region.

Similarly, the corners, edges, and center regions, r∗
C , r∗

E , r∗
M are

ormed by grouping the sub-regions. The sojourn counts and mean
nstantaneous speeds are calculated by adding the corresponding
ortions of sojourn count and mean instantaneous speed matrices
s:

SCr∗
C

= SC(r∗
11) + SC(r∗

13) + SC(r∗
31) + SC(r∗

33),

MISr∗
C

= MIS(r∗
11) + MIS(r∗

13) + MIS(r∗
31) + MIS(r∗

33),

SCr∗
E

= SC(r∗
12) + SC(r∗

21) + SC(r∗
23) + SC(r∗

32),

MISr∗
E

= MIS(r∗
12) + MIS(r∗

21) + MIS(r∗
23) + MIS(r∗

32),

SCr∗
M

= SC(r∗
22),

MISr∗
M

= MIS(r∗
22).

The feature vector for the corner part is given by

r∗
C

=
⌊

�(SCr∗
C
) �(SCr∗

C
) �(MISr∗

C
) �(MISr∗

C
)
⌋

.

The feature vector for the third classification step VIII is the con-
atenation of the feature vectors for all parts, i.e., r∗

C , r∗
E , and r∗

M .

III =
⌊

vr∗
C

vr∗
E

vr∗
M

⌋
.

he classifier processes VIII labeled it as morphine- or diazepam-
reated.
.6. Classifiers and validation scheme

In the classification step, Support Vector Classifier (SVC) and
inear Discriminant Classifier (LDC) are used. SVC is based on

ig. 5. Evolution of success rates for HC step 1 via LD and SV classifiers. LDC and SVC perf
teady value after 10 samples. Data expressed as the mean ± SD. HC: Hierarchical Classific
e Methods 180 (2009) 234–242

support vector machines. Among all hyperplanes, that separate
the given classes, there exists a unique hyperplane which gives
the maximum margin of separation implying that the distances
from the hyperplane to the nearest data points in the separated
classes are maximized (Scholkopf et al., 1999). Support vectors are
employed in finding this particular hyperplane, making margin of
separation maximum (Hearst et al., 1998). The application is imple-
mented in MATLAB (Mathworks, USA) using Pattern Recognition
Toolbox PRTools (Duin, 2006). LDC employs linear discriminant
functions and looks for a function that gives the most efficient
direction for discrimination, namely linear discriminant function
(Balakrishnama and Ganapathiraju, 2001).

For all classifiers, we investigated the test and training per-
formance with series of classification experiments. Training
performance is described by how well the classifier learns the char-
acteristics of the classes. While exploring training performance, we
trained the classifier with a number of training examples and then
tested it with exactly the same set of training patterns. The size of
training set was increased gradually and the evolution of classifi-
cation performance against training set size was investigated. Thus
it was inferred whether a classifier is able to apprehend the class
properties or not. Test performance shows how well the classifier
performs when new patterns are investigated for class member-
ship. While measuring test performance, the classifier was trained
with a number of training patterns and then tested by new pat-
terns. The number of training patterns was increased step by step
and the classifier was tested by the rest of the dataset at each step.
As the number of training examples was increased, the classifica-
tion performance is expected to increase and reach to a steady state
value.
In HC we started from two training samples and increased them
until the steady state value of the success rate was reached. Leave-
One-Out (LOO) classification scheme on HC was also used. LOO
uses a single observation from the original sample as the validation
data and the remaining observations are regarded as the training

ormances increased with the number of animals and the success rates reached to a
ation, SVC: Support Vector Classifier, LDC: Linear Discriminant Classifier.
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Table 1
Success rates for each step of Hierarchical Classification using SV and LD classifiers.

SVC LDC # of recordings

Step 1 U 96% 92% 24
T 100% 100% 24

Step 2 I 92% 83% 12
D 92% 92% 12

Step 3 MO 83% 67% 6
DI 83% 67% 6
AM 67% 50% 6
CO 83% 83% 6
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VC: Support Vector Classifier, U: drug-untreated video recordings, T: drug-treated
ideo recordings, I: increased locomotor activity, MO: morphine, DI: diazepam, AM:
mphetamine, CO: cocaine.

ata. This procedure was repeated such that each observation in
he sample was used once as the validation data (Duda et al., 2001).

.7. Performance

Success rates of SVC and LDC for HC and LOO are given in Fig. 5
nd Table 1. For HC, 4 trials for each number of training samples
ere made and the average as the success rate was obtained for

ach number of samples. Success rate of about 90% was achieved as
he number of training samples reached to 10.

By using the LOO classification scheme we checked whether SVC
nd LDC mislabeled the feature vectors. Some of the animals in
given set of drug treatment groups displayed nonhomogeneous
ehavior characteristics, which lead to mislabeling as shown in
able 1.

. Discussion

This paper describes a novel approach to automatically discrimi-
ate psychotropic drugs by means of a computerized video-tracking
ystem which accomplishes this process by analyzing the loco-
otor behavior alterations. This system extracts parameters like

ojourn counts, instantaneous speeds, and regional activity from
he video recordings and employs a classification algorithm and
nally reaches to a conclusion about the drug administered.

Although motion tracking-based computer analysis for behav-
oral responses has been used for years, the previous approaches

ere not intended to discriminate a particular drug among other
sychoactive agents employed. Automation of the analysis of loco-
otor activity renders drug screening and behavioral phenotyping

f experimental animal studies much easier and faster, conse-
uently this will increase the experimental throughput.

In this study, the algorithm we proposed was based on the
nalysis of unique feature vectors which were derived from loco-
otion data. Feature vectors were used to distinguish animal

ehavior under the influence of a particular psychotropic drug
nd compare them with the behavior of the animal before and
fter drug administration and also with other drugs used in this
tudy. These feature vectors constructed by the use of the instan-
aneous speeds and sojourn counts, adequately represented the
rug-induced alterations in behavior and provided the categoriza-
ion of the animals by feeding the information to the SVC and LDC.
imilarly, another method used by Drai et al. (2000) and Kafkafi
nd Elmer (2005) successfully derived discriminative properties of
mphetamine–phencyclidine and amphetamine–cocaine, respec-

ively. This algorithm was based on defining distinct modes of rat
ocomotion by segmenting the behavioral data as “staying in place”
nd “going between places” according to the maximum speed
ttained within the segment (Drai et al., 2001). In the algorithm
e proposed, the total number of visits to each pixel were deter-
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mined and then the cumulative speeds of the animal within these
pixels were calculated. Therefore, in our study instead of describing
the behavior by segmenting the time series of locomotion data, we
used feature vectors that are based on behavior of the animal in a
two-dimensional matrix representing the arena.

The feature vectors and classifiers provided a final conclusion
of HC with 70–80% accuracy. Although, the baseline activity of
mice displayed variations among the groups, we observed over 96%
correct labeling for the drug-untreated “naïve” animals. The algo-
rithm displayed 92% accuracy during the analysis step where the
drug-treated animals were sorted according to their increased or
decreased activities. These findings further support the efficacy of
our feature vectors. Additionally, the algorithm was able to match
the animals and the drugs administered correctly even under the
circumstances where both of the drugs yielded similar cumulative
distance curves. For example, both cocaine and amphetamine sig-
nificantly increased the cumulative distances travelled. In this case,
the algorithm achieved 70% success rate in drug-animal matching.
Similarly, diazepam and morphine decreased the cumulative dis-
tances travelled, while the success rate was still around 80%. It also
should be noted that SVC performed better during drug–animal
matching steps according to the LDC.

In the training phase of HC, we observed that the classifiers reli-
ably and quickly learned the characteristics of each classes. Success
rates improved as the number of training samples increased. For the
number of training samples larger than 10, the classifiers seemed to
fully comprehend the class characteristics. Therefore, in this study
24 mice per group yielded enough discrimination power for the
classifiers. The mislabeling of SVC and LDC usually corresponded
to the same animals. This finding indicates that these mislabeled
animals displayed a different behavior than the rest of the set.
We observed that except amphetamine-cocaine classification SVC
performed better than LDC in all the classification steps of LOO
scheme.

In order to simplify the developmental process of the software
we focused on four psychotropic drugs with well-defined behav-
ioral properties. This simplification enabled us to achieve our goal of
efficient automatic categorization. However, at this current devel-
opmental stage, performance of our software is expected to be
lower with drugs from other psychotropic groups and in differ-
ent experimental designs. For instance, psychoactive drugs with
mixed action might yield lower success rates. But at this stage,
we did not try to evaluate the effects of psychoactive compounds
with mixed behavioral properties, since this was beyond the scope
of our study. Although our data was acquired in a paired fashion
we also compared the unpaired data with their unmatched con-
trols. In this setting, our software achieved similar success rates
with paired design during the comparisons of naïve vs. naïve or
naïve vs. drugs inducing behavioral inhibition. However, our soft-
ware was less accurate when discriminating the psychotropic drugs
which induced increased locomotor activity. At this stage, our soft-
ware utilized only two parameters for the discrimination processes.
Addition of more parameters like revisits to recently visited sites
and rearing behavior is expected to improve the success rates by
increasing the discriminating power. Additionally, our software
is a learning-based program; therefore, by introducing additional
data acquired either from the drugs we employed and the other
psychotropic drugs, improvement of the software performance is
expected. Thus, we are planning to implement these modifications
into the program and feed with additional data which will possibly
increase success rates and reduce the number of possibilities in the

case of a new drug or unpaired settings.

In conclusion, the method we developed automatically discrim-
inated drug-treated and -untreated mice and matched the animals
with their corresponding psychotropic agents. The feature vectors
and classifiers used in our study proved to be effective and sensitive
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nough to represent the behavioral characteristics of the animals
nder the influence of psychotropic drugs.
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