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ABSTRACT

Motivation: With complex traits and diseases having potential
genetic contributions of thousands of genetic factors, and
with current genotyping arrays consisting of millions of single
nucleotide polymorphisms (SNPs), powerful high-dimensional
statistical techniques are needed to comprehensively model
the genetic variance. Machine learning techniques have many
advantages including lack of parametric assumptions, and high
power and flexibility.
Results: We have applied three machine learning approaches:
Random Forest Regression (RFR), Boosted Regression Tree (BRT)
and Support Vector Regression (SVR) to the prediction of warfarin
maintenance dose in a cohort of African Americans. We have
developed a multi-step approach that selects SNPs, builds prediction
models with different subsets of selected SNPs along with known
associated genetic and environmental variables and tests the
discovered models in a cross-validation framework. Preliminary
results indicate that our modeling approach gives much higher
accuracy than previous models for warfarin dose prediction. A model
size of 200 SNPs (in addition to the known genetic and environmental
variables) gives the best accuracy. The R2 between the predicted and
actual square root of warfarin dose in this model was on average
66.4% for RFR, 57.8% for SVR and 56.9% for BRT. Thus RFR
had the best accuracy, but all three techniques achieved better
performance than the current published R2 of 43% in a sample of
mixed ethnicity, and 27% in an African American sample. In summary,
machine learning approaches for high-dimensional pharmacogenetic
prediction, and for prediction of clinical continuous traits of interest,
hold great promise and warrant further research.
Contact: cduarte@uab.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

1.1 Machine learning techniques for genomic
association and predictive modeling

Machine learning techniques have been widely used in the analysis
of genetic data with many examples in the field of gene expression
(see for example Furey et al., 2000; Shipp et al., 2002; Hang et al.,
2005) and more recently using genotypic data sources such as single
nucleotide polymorphisms (SNPs) (Ban et al., 2010; Goldstein
et al., 2010; Okser et al., 2010; Szymczak et al., 2009; Uhmn
et al., 2009; Wei et al., 2009). In one study, the Support Vector
Machine (SVM) algorithm was applied to P-value filtered genome-
wide SNP data for type I diabetes (T1D), and predictive accuracy
was verified in two independent cohorts in which a C-statistic of
0.84 was obtained (Wei et al., 2009). Prediction of extreme classes
of atherosclerosis risk using stratification based on quantitative
ultrasound imaging of carotid artery intima-media thickness (IMT)
using a naïve Bayes classifier technique for both SNP selection and
predictive model building was performed in Okser et al., 2010,
and a C-statistic of 0.844 was obtained versus 0.761 obtained from
clinical variables alone. Importantly, in both studies ( Okser et al.,
2010; Wei et al., 2009) the investigators found that much greater
predictive accuracy was obtained when including a large number of
SNPs, and comparatively poorer performance was obtained when
including only the SNPs found to have genome-wide significance.
In Uhmn et al., 2009, machine learning approaches were used to
discriminate chronic hepatitis in a case–control candidate SNP study,
with maximum accuracy between 67% and 73% found depending
on the technique used (where accuracy was defined as the total
number of correctly classified samples divided by the total number
of samples).

Investigators have also applied machine learning techniques to
genome-wide association study (GWAS) data for gene discovery
(Ban et al., 2010; Goldstein et al., 2010; Szymczak et al., 2009).
Random Forests were used to find additional associated variants in
four genes in a GWAS of multiple sclerosis (Goldstein et al., 2010).
Prediction and gene discovery were both achieved when the authors
applied machine learning techniques to type II diabetes in a Korean
cohort in a candidate SNP study (Ban et al., 2010). In this study,
a 65.3% prediction rate was achieved with 14 SNPs in 12 genes
using the radial basis function (RBF)-kernel SVM, and additionally
novel associations between certain SNP combinations and type II
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diabetes were obtained (in this study overall prediction rate was
defined as the number of correctly classified subjects, either case or
control, divided by the total number of subjects). Various machine
learning techniques were tested to discover disease SNP associations
in simulated and experimental GWAS datasets as part of the Genetic
Analysis Workshop (Szymczak et al., 2009), and many advantages
were found in using machine learning techniques over traditional
statistical techniques, although it was noted that implementation of
methods and variable selection techniques specific for GWAS data
are needed.

Machine learning techniques have many advantages including
robustness to parametric assumptions, high power and accuracy,
ability to model non-linear effects, many well-developed algorithms,
and the ability to model high-dimensional data. However, as
previously noted (Szymczak et al., 2009), implementation of
these methods in high-dimensional GWAS data is not trivial, and
many details involving variable selection and algorithm parameter
selection need to be optimized. Most existing studies have dealt only
with candidate SNP data (for instance Ban et al., 2010; Okser et al.,
2010; Uhmn et al., 2009) in which at most hundreds of SNPs are
modeled. Genome-wide data are analyzed in Goldstein et al. (2010),
Szymczak et al. (2009) and Wei et al. (2009), although gene-finding
was the main goal in two of these (Goldstein et al., 2010; Szymczak
et al., 2009).

A simplistic but effective variable selection technique of using a
P-value threshold from single marker analysis is used to reduce the
number of SNPs from hundreds of thousands to hundreds in (Wei
et al., 2009), and we use a similar strategy here. However, in our
study we model a continuous rather than a dichotomous trait, and
we investigate the performance of three commonly used machine
learning approaches that are specific for modeling continuous data:
Random Forest Regression (RFR), Boosted Regression Tree (BRT)
and Support Vector Regression (SVR).

1.2 Warfarin dose prediction
Treatment with warfarin, the most widely used oral anticoagulant
agent worldwide, is complicated by the unpredictability of dose
requirements and variability in anticoagulation control due to the
multitude of factors that influence warfarin pharmacokinetics and
pharmacodynamics. Given the narrow therapeutic index of warfarin,
this variability is often associated with hemorrhagic complications.
To mitigate the risk-associated response variability, investigators
and clinicians have focused on developing strategies to improve
dose prediction with the hopes of improving anticoagulation control
with resultant decrease in hemorrhage. The recent seminal work
of the IWPC demonstrates that clinical factors account for 26% of
the variability in dose, which is improved to 43% by incorporation
of CYP2C9 and VKORC1 genotypes (The International Warfarin
Pharmacogenetics Consortium, 2009), two genes of demonstrated
significance in explaining warfarin dose–response (Limdi and
Veenstra, 2008). The ability of clinical and genetic factors to predict
dose is significantly higher among patients of European descent (50–
70%) as compared to those ofAfrican descent (25–40%) (Gage et al.,
2008; Limdi et al., 2008, 2010; Schelleman et al., 2008a, 2008b;
Wadelius et al., 2007, 2009).

Herein we use machine learning approaches to determine if
dose prediction for African American patients can be improved
by incorporating many more genotypic variables. The goal of the

study was to (i) develop an overall analysis pipeline that could be
used to implement and test each approach (RFR, BRT and SVR);
(ii) compare and contrast the advantages and disadvantages of each
approach; and (iii) choose the best method and develop a new model
for predicting warfarin maintenance dose in African Americans.

2 METHODS

2.1 Warfarin patient cohort, genotyping and single
marker analysis

The details of the patient cohort, genetic and clinical variables collected, and
initial processing of genetic data are contained in the SupplementaryMaterial.
The clinical variables included age, height, weight, congestive heart failure,
concurrent amiodarone use, moderate or severe chronic kidney disease
(CKD) as assessed by estimated glomerular filtration rate levels and/or
treatment with maintenance dialysis.

We performed whole-genome genotyping for 300 individuals using the
Illumina 1M array with an overall 99.5% genotyping call rate and no gender
discrepancies (six samples with call rates of <99.5% were excluded from
analysis). We filtered SNPs based on a minor allele frequency of <2% due
to the small sample size, and failure of the Hardy–Weinberg Equilibrium
(HWE) test as assessed by a P-value of <0.001 (Purcell et al., 2007). We also
removed two pairs of individuals (four individuals) with higher than expected
genetic relatedness as measured in PLINK and EIGENSTRAT (Price et al.,
2006), resulting in 290 as the sample size for subsequent analysis.

Single marker linear regression was performed in PLINK using the square
root of warfarin dose as the response variable and including the covariates
age, weight, height, congestive heart failure, moderate or severe CKD, and
concurrent use of amiodarone and the first two principle components from
Eigenstrat (Price et al., 2006) to control for population stratification. To
identify novel markers that could improve dose prediction, we also included
the following genetic variables as covariates including genetic variants within
VKORC1 (rs9934438), ApoE (rs429358 and rs7412), CYP4F2 (rs2774030)
and CYP2C9 (haplotype of rs1799853, *2, and rs1057910, *3).

2.2 Model building
Our entire process was contained within a five-fold cross-validation (CV)
structure, with all model building steps (including SNP selection) performed
in each training partition and the model evaluation performed in the
respective test partition for each fold. In order to build a predictive genetic
model with only the most important genetic variants, we performed a
selection of SNPs at a certain P-value cutoff using linear regression in
PLINK, an approach similar to that taken in Wei et al. (2009). We used
the top set of SNPs (according to P-value) in set sizes between 20 and 500.
We chose to use set size (number of markers), rather than P-value threshold
as in Wei et al. (2009), in order to keep model sizes constant across folds.
Once a set of SNPs was selected, imputation of missing values was performed
using fastPHASE (Scheet and Stevens, 2006). An additive coding was used
for the SNPs selected (either 0, 1 or 2 copies of the minor allele). Then
the most accurate model for a given set of variables was discovered in the
training partition using RFR, SVR or BRT, where model accuracy for the
continuous dose–response trait is assessed using R2, the squared correlation
between predicted and actual trait value (square root of warfarin dose). R2

is the measure that we will use to measure predictive accuracy of the model
throughout this article. Finally, the predictive accuracy of the model was
assessed in the test partition using R2 between actual and predicted trait
value. The overall process is illustrated in Figure 1.

BRT, SVR and RFR were implemented using R. We used the gbm package
for BRT, the randomForest package for RFR, the ModelMap package for
data manipulation and the e1071 package for SVR. Here we will briefly give
some background on each approach and discuss the selection of algorithm
parameters.
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Fig. 1. Diagram of model building pipeline including (i) subdivision of
sample into testing and training partitions; (ii) SNP selection using training
partition; (iii) imputation of selected SNPs using FastPhase; (iv) model
building using BRT, RFR or SVR; and (v) model evaluation in testing
partition.

2.2.1 BRT BRT makes use of Classification and Regression Tree (CART)
models and boosting, and is a stagewise technique in the sense that every
new tree is chosen to fit the previous tree’s residuals. At the final stage BRT
develops a regression model f (x) as a function of the M selected trees,

f (x)=
M∑

m=1

βM b(x;γm)

where m=1,2, ... ,M indexes the tree, βm are basis expansion coefficients,
x represents the set of SNPs and b(x; γm) are the basis functions of x having
parameters γm. The key algorithm parameters are the learning rate (lr) which
shrinks the contribution of each tree as it is added to the model, and the
number of trees (nt). In general a smaller lr and a larger nt is desirable (Elith
et al., 2008), contingent on the sample size and the computational complexity.
The usual approach is to estimate the optimal lr and nt (Breiman, 2001)
with an independent test set or with CV, using deviance reduction as the
measure of success. In our study, we estimated these parameters according
to CV (within the training partition in the overall pipeline). In addition,
we performed stochastic gradient boosting to fit boosted regression models,
which improves predictive performance through reducing the variance of
the final model by using only a random subset of data to fit each new tree
(Breiman, 2001).

2.2.2 SVR SVR (Vapnik, 1998) uses linear models to implement non-
linear regression by mapping the input space to a higher dimensional feature
space using kernel functions. A feature of SVR is that it simultaneously
minimizes an objective function which includes both model complexity and
the error in the training data (Moser et al., 2009). In ε-SV regression (Cortes
and Vapnik, 1995), the goal is to find a function that has at most ε deviation
from yi, and at the same time is as flat as possible (small w as defined below)
(Basak et al., 2007). We can write this problem as a convex optimization
problem (Moser et al., 2009; Smola and Schölkopf, 2004),

minimize
1

2
||w||2 +c

l∑
i=1

(ξi +ξ∗
i )

subject to

⎧⎪⎨
⎪⎩

yi −〈w,xi〉−b ≤ε+ξi

〈w,xi〉+b−yi ≤ε+ξ∗
i

ξi,ξ
∗
i ≥0

where w are the regression coefficients onto the kernel basis functions, C is a
regularization parameter, l is the sample size, ξi and ξ∗

i are slack variables, yi

is the trait for individual i, xi is the set of SNPs for individual i, b represents

the deviation from the true data value yi and ε is the tolerance margin. In our
implementation, we used a Gaussian kernel which replaces the dot product
listed in the primal form above,

K(x,xi)=e−γ||x−xi ||2 .

The values of the parameters C and γ were calibrated via five-fold internal
CV within the training set using the tune.svm function in the e1071 package
in R (with the remaining parameter ε constrained after optimization of the
other two). Such selection of C and γ from the training data (and estimated
noise level) is shown to have good generalization properties for SVR over
a variety of different types of datasets (Cherkassky and Ma, 2004). The
parameter values estimated are shown in Supplementary Table S1.

2.2.3 RFR RFR is an effective non-parametric statistical technique
for high-dimensional analysis. Random Forests are a combination of tree
predictors such that each tree depends on the values of a random vector
sampled independently and with the same distribution for all trees in the
forest. The tree methods exhaustively break down cases into a branched,
tree-like form until the splitting of the data is statistically meaningful, with
unnecessary branches pruned using other test cases to avoid overfitting (Choi
and Lee, 2003). The generalization error for forests converges to a limit as the
number of trees in the forest becomes large, and depends on the strength of
the individual trees in the forest and the correlation between them (Breiman,
2001). Each tree in the forest is grown to the largest extent possible without
pruning. To classify a new object, each tree in the forest gives a classification,
which is interpreted as the tree ‘voting’ for that class. The final classification
of the object is determined by majority votes among the classes decided
by the forest of trees (Chen and Liu, 2005). Our algorithm additionally
uses a bootstrap-based CV approach to improve performance and prevent
overfitting (Cabrera, 2009). The one tuning parameter for RFR is mtry which
is the number of descriptors randomly sampled for potential splitting at each
node during tree induction. This parameter can range from 1 to p (the number
of predictors). We used p/3 as recommended for regression (Svetnik et al.,
2003), although it was noted in that article that the performance of random
forest (RF) changed little over a wide range of values of mtry except near the
extremes of 1 or p. The actual values of mtry used are shown in Supplementary
Table S2.

3 RESULTS
We tested each machine learning technique (RFR, BRT and SVR)
on a variety of different pharmacogenetic models listed in Table 1.
Model 1 is similar to the previously tested model (IWPC, 2009)
found to have an R2 of 43% in an independent multi-ethnic cohort.
Model 2 includes the variables in Model 1 as well as some additional
previously identified associated genetic variants. The remaining
models include the variables from Model 2 augmented by SNPs
selected using single marker analysis in PLINK (see Section 2).

The R2 of each discovered model averaged over the training and
testing partitions in the five-fold CV for RFR, BRT and SVR are
shown in Table 2. In addition, Figure 2 shows a plot of the average
R2 for each model and each technique in the test partitions.

Figure 2 shows that predictive accuracy as measured in the test
partitions increases with larger models for all three methods tested
until a peak at the M2+200 model, beyond which further increases
in model size cause a slight decrease in predictive accuracy. One
interpretation of this result is that the increased noise associated
with estimating a larger and more complex model outweighs the
benefit of additional variables beyond 200 SNPs, or alternatively,
that Model 2 augmented by the first 200 SNPs may capture all or
most of the relevant genetic (and environmental) predictors. Future
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Table 1. Prediction models for square root of warfarin dose–response tested
in our study

Model Variables

M1a Clinical variables + VCORC1 + CYP2C9
M2b Model 1 +ApoE + CYP4F2
M2 + 20 Model 2 + best 20 SNPs
M2 + 50 Model 2 + best 50 SNPs
M2 + 100 Model 2 + best 100 SNPs
M2 + 150 Model 2 + best 150 SNPs
M2 + 200 Model 2 + best 200 SNPs
M2 + 300 Model 2 + best 300 SNPs
M2 + 400 Model 2 + best 400 SNPs
M2 + 500 Model 2 + best 500 SNPs

aClinical variables include age, weight, height, congestive heart failure, moderate or
severe CKD, concurrent use of amiodarone and the first two principle components
from Eigenstrat; VKORC1 is represented by rs9934438, and CYP2C9 is a haplotype
of rs1799853 (*2) and rs1057910 (*3).
bApoE is a haplotype of rs429358 and rs7412, and CYP4F2 is rs2774030.

Table 2. Mean R2 for prediction of square root warfarin maintenance dose
as measured in training and testing partitions using five-fold CV with: RFR,
BRT and SVR

Model RFR BRT SVM

Training Test Training Test Training Test

M1 25.6 (1.6) 21.7 (1.7) 29.5 (7.0) 19.9 (1.5) 24.6 (2.0) 25.0 (2.4)
M2 30.5 (1.2) 27.8 (2.1) 22.5 (1.5) 22.0 (1.6) 30.9 (2.1) 30.4 (1.1)
M2 + 20 35.6 (2.5) 35.8 (1.4) 28.1 (2.6) 22.9 (1.5) 32.9 (1.4) 33.5 (2.0)
M2 + 50 44.8 (2.1) 41.8 (1.5) 35.1 (2.4) 31.0 (2.4) 36.3 (1.9) 37.2 (2.4)
M2 + 100 50.9 (2.5) 51.2 (2.6) 39.4 (3.0) 34.8 (1.5) 44.6 (3.1) 49.3 (2.1)
M2 + 150 58.5 (1.5) 60.5 (1.7) 44.4 (3.3) 45.5 (1.4) 54.5 (1.0) 55.5 (2.6)
M2 + 200 66.8 (0.9) 66.4 (1.1) 56.2 (0.8) 56.9 (0.7) 58.6 (1.6) 57.8 (1.4)
M2 + 300 58.2 (2.9) 57.1 (1.1) 54.6 (2.8) 47.9 (1.3) 56.2 (1.1) 54.0 (1.8)
M2 + 400 55.1 (2.7) 49.1 (1.9) 54.1 (3.1) 52.8 (1.8) 54.5 (1.2) 52.3 (3.8)
M2 + 500 53.5 (1.7) 48.0 (1.3) 51.5 (2.4) 49.2 (1.4) 53.6 (1.5) 47.2 (4.0)

Standard error of the mean R2 is shown in parentheses. The models are described in
Table 1.

Fig. 2. Mean and standard error of R2 in test partitions for RFR, BTR and
SVR techniques averaged over five-fold CV results for different models fitted
(Table 1). Standard error is given as the SD over test partitions divided by
the square root of the number of test partitions.

testing with a larger sample size may help decide between these two
hypotheses.

In terms of the overall predictive accuracy achieved as measured
in the test partitions, the R2 for Model 1, which is analogous to
the previously tested model (IWPC, 2009), ranges from 25% to
30%, which is less than the previously cited R2 for this model in a
multi-ethnic cohort, (43%; IWPC, 2009), but is in agreement with
previous estimates in populations of African descent (Gage et al.,
2008; Limdi et al., 2008, 2010; Schelleman et al., 2007, 2008a,
2008b). Model 2, which contains other known associated variants
for warfarin dose–response, is seen to have a modest increase in
accuracy over Model 1, but significant increases in accuracy are
seen with the addition of SNPs using each of the machine learning
regression techniques tested. The highest predictive power was seen
with RFR in which an average R2 of 66.4% was achieved with
Model 2 +200 SNPs. The other two methods tested, BRT and SVR,
also show the highest predictive accuracy with the M2+200 model
(56.9% for BRT and 57.8% for SVR). These R2 values are much
higher than the 27% reported by the IWPC (Limdi et al., 2010) for
African Americans.

Robustness of the proposed models is demonstrated in part by
comparing the change in R2 from training to testing partitions
(Table 2). The decrease in R2 is seen to be very small or not existent,
and in general within the error of the method, which suggests that
our methodology is able to guard against overfitting. In addition, the
fact that the predictive accuracy of our methods show a peak at a
certain model size (Model 2 + 200 SNPs) and does not continue to
increase demonstrates that mechanisms for preventing overfitting in
each of the three methods tested are having the desired effect.

Further improvements in predictive accuracy may be achieved
if larger testing and training sets are used. Similarly, this approach
may improve dose prediction for ethnic groups other than African
American. Although RFR achieved the best performance in this
study, all three techniques show improved prediction over the current
model.

4 DISCUSSION
In this article, we have demonstrated a practical approach for
applying three commonly used machine learning techniques for
continuous data, RFR, SVR and BRT, to create highly accurate
predictive models using genome-wide genotype data and clinical
variables. In an application to prediction of warfarin dose–response
in African Americans, all three methods tested, RFR, SVR and
BRT, achieved better performance than currently published reports
(IWPC, 2009; Limdi et al., 2010), although the highest accuracy
was achieved with RFR. This may be due to the robustness of
RFR to overfitting in performing bootstrapping over thousands of
trees. The results of this study indicate that even with a phenotype
like warfarin maintenance dose that has many validated associated
genetic variants of large effect, it is still important to include a large
number of genotypic variables in a predictive model to capture the
most genetic variance. Our results are consistent with the findings
in (Okser et al., 2010; Wei et al., 2009) that show that including
only those SNPs found to have genome-wide significance in GWAS
studies results in poorer predictive performance, and that much
better performance is obtained with larger models.

In considering which machine learning method to apply to
GWAS-based predictive modeling of a continous trait, there
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are many considerations. While in the present study the best
performance was obtained with RFR, evaluation of these three (RFR,
SVR and BRT) and other methods needs to be performed in many
different studies before final conclusions can be drawn about the
superiority of a particular approach. Also, it should be noted that the
present study is performed in a single ethnicity (African American),
and testing in sample populations of different ethnicity needs
to be performed before drawing general conclusions. In general,
the advantages of RFR include that variable selection is done
internally and thus is not a prerequisite, it has a reliable procedure
for monitoring internal predictive performance, and discovered
models obtained are tolerant to noise in source experimental data.
The most important disadvantage is that RFR can be potentially
unreliable for variable selection when diverse variable types are
included (Strobl et al., 2007), although the predictive accuracy
is not expected to suffer. The main advantage of SVR is that
it fits a continuous-valued function to data in a way that shares
many of the advantages of SVMs classification. A disadvantage
of SVR is that most algorithms (Chang and Lin, 2002; Smola
and Schölkopf, 1998; Smola et al., 1998) require that the training
samples be delivered in a single batch (Basak et al., 2007). As
SVR is a relatively new method, more investigation is required to
clarify its advantages and disadvantages, of which our study is one
example. The advantages of BRT include that it can accommodate
continuous and factor predictors, it automatically fits interactions,
it is insensitive to monotone transforms of predictors, it allows for
missing values in predictors and it ignores extraneous predictors.
The disadvantages are that it can be prone to misclassification error,
and it can be difficult to interpret for larger trees, although results
of BRT are usually more reliable than other tree-based methods.
Overall, our study confirms the conclusions of previous studies that
indicate machine learning methods are suitable for high-dimensional
genomic data modeling (Ban et al., 2010; Goldstein et al., 2010;
Okser et al., 2010; Szymczak et al., 2009; Uhmn et al., 2009; Wei
et al., 2009).

There are many areas for improvement and optimization in our
approach, the most important of which may be the pre-selection of
SNPs. Using a P-value threshold is convenient and fast, but may
entail addition of redundant, linked predictors to the model and may
not result in selection of the most complementary SNP set, although
it should be noted that the machine learning techniques used can
appropriately handle correlated predictors.Amachine learning based
variable selection step such as that used in Okser et al. (2010)
may be a good alternative if it can be generalized to genome-wide
data. It should also be noted that we used a constant model size
(number of SNPs) rather than a set P-value threshold in exploring
different-sized predictive models (Table 1) in order to keep model
sizes constant across folds, otherwise it would be preferable to use
preset increments in P-value threshold.

Other open research questions include the tuning and optimization
of algorithm parameters for GWAS SNP data, trying new machine
learning techniques such as Random Jungle (Schwarz et al., 2010)
or incorporating dimension reduction prior to variable selection.
Incorporation of more clinical and environmental variables as
well as allowing for gene by environment interaction may also
improve predictive performance. In addition, we did not explore
different normalizations of the non-genetic model variables in
order to keep our predictive models consistent with previously
described warfarin dose–response models, and instead focused on

how to best complement existing models with varying numbers
of genetic predictors. However, it is possible that alternative
normalizations of these parameters may give improved prediction,
and this will be explored in future work. In addition, an in-
depth evaluation of different machine learning methods in terms of
predictive performance, robustness and computational performance
in a simulation study would be valuable, as well as a comparison
of machine learning versus traditional statistical approaches for
prediction using genome-wide data.

Validation of the discovered models in an independent dataset
is currently in progress, although use of this model in clinical
practice will require model discovery in a much larger and more
representative sample for fine-tuning of model parameters. However,
the strong positive results from this initial study show that machine
learning techniques for high-dimensional pharmacogenetic models
hold much promise for improving clinical predictions of dose–
response and other relevant continuous-valued clinical traits.
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