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This consensus statement has been compiled on behalf of the International Society for Holter and Noninvasive
Electrophysiology. It reviews the topic of heart rate turbulence (HRT) and concentrates on technologies for mea-
surement, physiologic background and interpretation, and clinical use of HRT. It also lists suggestions for future
research. The phenomenon of HRT refers to sinus rhythm cycle-length perturbations after isolated premature
ventricular complexes. The physiologic pattern of HRT consists of brief heart rate acceleration (quantified by the
so-called turbulence onset) followed by more gradual heart rate deceleration (quantified by the so-called turbu-
lence slope) before the rate returns to a pre-ectopic level. Available physiologic investigations confirm that the
initial heart rate acceleration is triggered by transient vagal inhibition in response to the missed baroreflex affer-
ent input caused by hemodynamically inefficient ventricular contraction. A sympathetically mediated overshoot
of arterial pressure is responsible for the subsequent heart rate deceleration through vagal recruitment. Hence,
the HRT pattern is blunted in patients with reduced baroreflex. The HRT pattern is influenced by a number of
factors, provocations, treatments, and pathologies reviewed in this consensus. As HRT measurement provides an
indirect assessment of baroreflex, it is useful in those clinical situations that benefit from baroreflex evaluation.
The HRT evaluation has thus been found appropriate in risk stratification after acute myocardial infarction, risk
prediction, and monitoring of disease progression in heart failure, as well as in several other pathologies.
(J Am Coll Cardiol 2008;52:1353–65) © 2008 by the American College of Cardiology Foundation
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he International Society for Holter and Noninvasive
lectrophysiology (ISHNE) charged the authors of this text
ith reviewing the topic of heart rate turbulence (HRT) and
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roviding a written consensus on the standards of measure-
ent, physiologic interpretation, and clinical use of HRT.
onsequently, this text is divided into 3 main parts corre-

ponding to the charge given by the Society.

he Phenomenon of HRT

oncept of HRT. The term HRT describes short-term
uctuations in sinus cycle length that follow spontaneous
entricular premature complexes (VPCs) (1). In normal sub-
ects, sinus rate initially briefly accelerates and subsequently
ecelerates compared with the pre-VPC rate, before returning
o baseline (Fig. 1). A similar pattern can also be induced by
acing, either by programmed ventricular stimulation or by an

mplanted device such as a cardiac defibrillator (2–5).
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Quantification and measure-
ment of HRT. Following singu-
lar VPCs, the HRT pattern is fre-
quently masked by heart rate
variability (HRV) of other origins.
Thus, averaging responses to a num-
ber of VPCs is needed to character-
ize the pattern accurately. Conse-
quently, HRT is usually assessed
from Holter recordings as an aver-
age response to VPCs over longer
periods (e.g., 24 h). From such re-
cordings, the so-called VPC ta-
chogram is constructed, aligning and
averaging the R-R interval se-
quences surrounding isolated VPCs.
These sequences include at least 2
sinus rhythm R-R intervals before

PCs, the coupling interval and compensatory pause, and at least
5 subsequent sinus R-R intervals. The average needs to include
sufficient number of VPCs (e.g., �5) for reliable construction of

he VPC tachogram. Studies involving only very short Holter
ecordings may not lead to meaningful results (6).

Two phases of HRT, the early sinus rate acceleration and late
eceleration, are quantified by 2 parameters termed turbulence
nset (TO) and turbulence slope (TS). Turbulence onset is
alculated as:

TO �
(RR1 � RR2) � (RR�2 � RR�1)

(RR�2 � RR�1)
� 100 [%]

here RR�2 and RR�1 are the 2 R-R intervals immediately
receding the VPC coupling interval, and RR1 and RR2 are

Abbreviations
and Acronyms

APC � atrial premature
complex

HRT � heart rate
turbulence

HRV � heart rate variability

LVEF � left ventricular
ejection fraction

MI � myocardial infarction

SBP � systolic blood
pressure

TO � turbulence onset

TS � turbulence slope

VPC � ventricular
premature complex
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Figure 1 VPC Tachograms

Ventricular premature complex (VPC) tachograms showing normal (left) and abnor
phase of heart rate (R-R interval shortening) immediately after the compensatory p
tion). Orange curves show single VPC tachograms. Bold brown curves show the a
R-R intervals immediately following the compensatory
ause (Fig. 2). Turbulence slope is defined as the maximum
ositive regression slope assessed over any 5 consecutive
inus rhythm R-R intervals within the first 15 sinus rhythm
-R intervals after the VPC (Fig. 2).
Hence, in normal subjects, the initial brief acceleration of

inus rate after the VPC is characterized by negative TO,
nd the subsequent rate deceleration is characterized by
ositive TS (Fig. 2).
Other parameters characterizing the HRT pattern have

lso been proposed (7–11) but none was found to improve
he HRT description by TO and TS meaningfully.

nalytical settings. To eliminate errors in Holter analysis
nd to exclude interpolated VPCs (see the Physiologic
ackground and Pathophysiology of HRT section), HRT
alculations are limited to VPCs with prematurity �20%
nd a compensatory pause of �120% of the mean of the 5
ast sinus rhythm intervals preceding the VPC. In actual
tudies, TO has also been calculated from tachograms
urrounding individual VPCs and subsequently averaged,
hich leads to similar values as when using the averaged

achogram. Turbulence slope always needs to be calculated
rom the averaged tachogram. (By eliminating the R-R
ariability due to other sources, averaging also decreased the
S value with increasing number of VPCs.)
Filtering of R-R interval sequence is also recommended

o exclude VPC tachograms containing very short (e.g.,
300 ms) or very long (e.g., �2,000 ms) R-R intervals or to

nclude substantial (e.g., �200 ms) beat-to-beat R-R inter-
al difference or substantial difference (e.g., �20%) from the
verage of preceding (e.g., 5) sinus R-R intervals.

Although lower electrocardiographic sampling frequen-
ies reduce the temporal resolution of R-R intervals, neither

400
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Abnormal

ght) heart rate turbulence (HRT). HRT is composed of the transient acceleration
ollowed by a subsequent and gradual deceleration phase (R-R interval prolonga-
d VPC tachogram over 24 h.
n
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O nor TS are significantly affected unless the sampling
ate falls below 50 Hz.

hysiologic Background
nd Pathophysiology of HRT

he relevant physiological mechanisms of HRT have been
xtensively studied and reviewed (12–17). Already in early
tudies, it was hypothesized that the initial heart rate
cceleration is triggered by transient vagal inhibition in
esponse to the missed baroreflex afferent input due to
emodynamically inefficient ventricular contraction, and a
ympathetically mediated overshoot of arterial pressure is
esponsible for the subsequent heart rate deceleration
hrough vagal recruitment (18). Although this hypothesis
as initially mainly speculative, it was substantiated by later

tudies.
hysiologic and pathophysiologic considerations. HRT

hares some physiological mechanisms with ventriculopha-
ic sinus arrhythmia in which ventricular contractions influ-
nce the periods of sinus nodal discharges even in the
bsence of retrograde atrioventricular conduction (19–21).
rterial baroreceptor activation by ventricular ejection was
roposed to be responsible for the reflex slowing of the sinus
odal rate. This interpretation is supported by the latency
nd dynamics of the effect compatible with vagal action
22–24), as well as by a correlation between intervals
etween consecutive P waves and invasively measured blood
ressure (25).
However, the trigger of HRT is not the same as that of

entriculophasic sinus arrhythmia. Ventriculophasic ar-
hythmia is associated with atrioventricular block and re-
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Figure 2 HRT Calculation

Calculation of the HRT parameters turbulence onset (TO) and turbulence slope
(TS). Turbulence onset is the relative change of R-R intervals (red lines) from
before to after the VPC. Turbulence slope is the slope of the steepest regres-
sion line fitted over the sequences of 5 consecutive sinus rhythm R-R intervals
within the 15 R-R intervals after the VPC. The light blue lines are the 11 possi-
ble regression lines. The dark blue line is the steepest one used for TS calcu-
lation. Abbreviations as in Figure 1.
ects the hemodynamic impact of idioventricular contrac- c
ions, but VPCs during normal sinus rhythm have instant
eleterious effects on cardiac output and produce different
emodynamic and neural reflex responses. Although the
arly positive chronotropic effect of VPC was reported
lready some 3 decades ago (26), both early positive and late
egative chronotropic effects of VPC were only described as
he components of HRT (1).

The early acceleration of heart rate during HRT is
onsistent with vagal withdrawal in response to the missed
aroreflex afferent input due to hemodynamically inefficient
entricular contraction. This hemodynamic deficiency is
aused by several factors including incomplete electrical
estitution, a short period of diastolic filling, missing atrial
ick, reduced contractility, higher afterload at the time of
PC, and less synchronized ventricular contraction. Be-

ause of all of these factors, systolic blood pressure (SBP)
roduced by VPC is considerably lower than that of normal
inus beats (17).

Both ineffective contraction and compensatory pause also
ause diastolic pressure reduction. Moreover, SBP produced
y the first post-VPC sinus beat is usually lower (in subjects
ith normal left ventricular function) compared with the
re-VPC level (17). Hence, not only the instant hemody-
amic effect of VPC but also SBP reduction during the
ubsequent beat activate aortic and carotid baroreceptors
ausing heart rate increase due to vagal inhibition.

At the same time, transient relative hypotension stimu-
ates the sympathetic arc of autonomic nervous system. The
ost-VPC drop of diastolic blood pressure initiates a surge
f muscle sympathetic nerve activity, which is immediately
ollowed by a period of sympathetic silence (27–31). The
agnitude of this burst, which cannot be observed earlier

han at the time of the first post-VPC beat, provokes
oradrenaline release in perivascular sympathetic endings,

eading to an increase of peripheral vascular resistance. It
lso depends on the blood pressure starting level, VPC
oupling interval, post-VPC diastolic pressure fall, barore-
ex sensitivity, and basal firing rate of muscle sympathetic
erve activity. Because the latency of hemodynamic re-
ponse to sympathetic nerve stimulation is approximately 5 s
32), the early heart rate acceleration of HRT is not likely
ediated by sympathetic efferent arm activation.
On the contrary, both branches of the autonomic nervous

ystem contribute to the late HRT phase characterized by
radual return of SBP and heart rate to pre-extrasystolic
evels. Under physiologic conditions, a significant overshoot
f both SBP and heart rate reduction below the baseline
alues are observed peaking around the 8th post-VPC beat.
t is now understood that this late overcompensation is
rimarily caused by an early sympathetic activation with
elayed vasomotor response as well as by vagal activation
Fig. 3) (33,34).

Early heart rate acceleration and late deceleration after
ingle VPCs parallel the corresponding SBP changes with
airly constant delay the pattern of change being fully

ompatible with baroreflex physiology (3,17,35–38). During
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he late HRT period, the change of SBP appears constant;
hus, HRT slope rather than post-VPC blood pressure
ynamic seems to reflect baroreflex sensitivity (35). Both
O and TS were found to correlate with baroreflex sensi-

ivity assessed by the phenylephrine method (39,40). Like-
ise, post-VPC heart rate patterns simulated by mathemat-

cal model of hemodynamics with baroreceptor feedback
with preserved and blunted baroreflex sensitivity) were
imilar to those observed clinically (41).

Both HRT characteristics are significantly influenced by
eft ventricular ejection fraction (LVEF) (42). Compared
ith healthy control patients, HRT indexes are also signif-

cantly depressed in patients with congestive heart failure
43) as well as in the presence of structural heart disease
ith preserved left ventricular function (37,44). Prominent
ost-extrasystolic potentiation interferes indirectly with the
agnitude of HRT dynamics (45). Initial vagal inhibition is

romptly upturned and subsequent sympathetic activation
and the dynamics of peripheral vascular resistance) atten-
ated (17). For all of these reasons, the late overshoot of
BP and R-R intervals after VPC might be missing. Thus,

n patients with structural heart disease, both depressed
agal and sympathetic modulations and, indirectly, en-
anced post-extrasystolic potentiation all account for atten-
ated HRT (Fig. 4).
The potentiation of the first post-ectopic beat may trigger

lectrical alternans with rapid time decay. This is caused by
combination of alternation in hemodynamics variables

end-diastolic pressure and volume) and inotropic state due

RR
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-1 1 5 10 15

# of RR interval

%
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Figure 3 Normal Post-Ectopic Blood Pressure and R-R Interval

Averaged profiles (mean � 95% confidence interval) of R-R intervals, systolic arter
after VPCs expressed in relative numbers (with 100% corresponding to pre-VPC va
�2 indicate those preceding the VPC; the first 2 post-VPC sinus R-R intervals are
as in Figure 1.
o alternation of calcium turnover (45). Post-VPC alternans V
henomenon was reported in one-third of patients with
ongestive heart failure (35).

A number of studies investigated the influence of basal
utonomic activity on HRT. Normal HRT can practically
e abolished by vagal blockade with atropine (2,36,46), but
o significant HRT change was observed after beta-
lockade with esmolol (36). This agrees with beta-blocker
dministration not leading to a complete sympathetic block-
de as well as acting predominantly on sinus node discharge
odulations, while being limited on peripheral vascular

esistance. As a result, sympathetically mediated overshoot
f SBP in the late HRT phase is not significantly affected by
eta-blockade. Consequently, the late heart rate decelera-
ion due to preserved vagal response remains unchanged.
ndeed, blood pressure dynamics were not significantly
hanged after vagal blockade (46), but are significantly
lunted in patients with sympathetic neurocirculatory fail-
re and abolished during trimethaphan-induced ganglion
lockade in healthy subjects (47).
HRT initiated by premature ventricular paced beats

as also been investigated (48). HRT responses were
ound to be very similar when triggered by spontaneous
PCs or paced beats. Moreover, both the magnitude and

he duration of hypotension during short ventricular train
rives were highly correlated with HRT heart rate
cceleration, confirming the role of sympathetic activa-
ion and vagal withdrawal in initial rate acceleration of a
tandard HRT pattern. This also confirms the impor-
ance of a full compensatory pause following isolated
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Theoretically, the late post-VPC increase in SBP
ight also be attributed to a transient increase of cardiac

utput due to purely nonautonomic mechanisms. How-
ver, this possibility is unlikely because post-extrasystolic
otentiation of contractility has a rapid exponential decay
49 –51). Also, no meaningful dynamics of stroke volume
n the late phase of HRT were observed when the
eat-by-beat stroke volume and peripheral vascular resis-
ance were computed by a nonlinear self-adaptive model
f aortic input impedance (17).
Similar to ventriculophasic sinus arrhythmia, other non-

utonomic but unlikely mechanisms might also be consid-
red for the early phase of HRT. A positive chronotropic
esponse has been induced by several mechanisms including
echanical stretch of sinus nodal tissue in isolated perfused

earts (52) or of sinus node (53), atrial pressure increase in
solated denervated hearts (54,55), and perfusion pressure
eduction of the sinus nodal artery (56). Similarly, it was
hown that the positive chronotropic effect produced by
raction on the sinus nodal region or on atrial appendages is
urely sympathetically mediated (57,58). Presently available
ata do not support any other retrograde hemodynamic
nd/or mechanical effects of VPCs on the atria unrelated to
he autonomic reflex arch.
actors affecting HRT. Gender does not influence HRT

n healthy control patients (59) or post-infarction patients
60). Increasing age is associated with a decrease in HRT
61), which is consistent with similar reports concerning
ost measures of autonomic control. Interestingly, how-

RR
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-1 1 5 10 15
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Figure 4 Post-Ectopic Blood Pressure and R-R Interval Changes

Profiles of R-R intervals, systolic arterial blood pressure (SBP), stroke volume (SV)
(LV) dysfunction. Symbols and layout as in Figure 3. Note the post-extrasystolic po
Modified, with permission, from Wichterle et al. (17). Abbreviations as in Figure 1.
ver, pre-pubertal children have lower TS than children p
uring puberty, paralleling maturation of the autonomic
ervous system (62).
HRT is reduced at a high heart rate (7,11,63–65). The
echanisms responsible for heart rate modulation of HRT

re not completely understood. Two possible and nonexclu-
ive explanations have been proposed (66). First, the asso-
iation of HRT and heart rate can be interpreted as a
onsequence of shared sympathovagal modulation. Second,
eart-rate dependency of HRT may reflect intrinsic sinus
odal properties, specifically the nonlinear relationship be-
ween vagal neural activity and the rate of diastolic depo-
arization of pacemaker cells (67). These observations lead
o the possibility of correcting HRT indexes for heart rate
65) but presently available data offer no practical guidance
or such a correction.

There is a modest correlation between HRT indexes and
RV measures suggesting other common intrinsic modu-

ators (39,44,65). Presence of circadian rhythm was dem-
nstrated in patients with coronary artery disease and
arallels circadian pattern of R-R intervals and HRV
ndexes (68–70).

The baroreflex source of HRT is in agreement with
tronger HRT responses to more premature, and thus less
emodynamically efficient VPCs with longer compensatory
auses (63). The effects of VPC coupling interval on HRT
ere also directly addressed in 2 pacing studies (7,71) with

omewhat conflicting results. In the earlier study, a relation-
hip between VPC coupling interval and HRT parameters
as observed only individually but not in the pooled
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nd TO and normalized coupling interval was negative and
ositive, respectively, in full agreement with HRT physio-

ogic background.
A typical HRT pattern is also observed after short runs of

onsustained ventricular tachycardia (72). The magni-
ude of these fluctuations is greater than after isolated
PCs, which is again in agreement with the physiologic
echanisms.
The site of VPC origin has no influence on HRT (73),

hereas retrograde atrial depolarization, which may reset
he sinus node, has rather the opposite effect to the
ost-VPC autonomic modulation of heart rate and may
hus change the dynamics of subsequent sinus R-R
ntervals (74).

trial HRT. A characteristic response of sinus periods is
bserved not only after ventricular but also after atrial
remature complexes (APCs) (71,73,75–78). However,
-R interval dynamics after APCs are different from that

fter VPCs. Heart rate abruptly decelerates after APCs with
prompt return to baseline, which is followed by subse-

uent and delayed transitory heart rate deceleration. Initial
brupt deceleration is likely caused by sinus nodal resetting
y APCs with subsequent recovery of sinus node automa-
icity (79). This mechanism overwhelms the autonomic
omponent of the early acceleration phase of HRT. The late
eceleration of heart rate after APCs is believed to result
rom a baroreflex response to blood pressure dynamics
ollowing the premature contraction, in the same way as in
PC-triggered HRT. This explanation is supported by

ignificant intra-individual correlation between TS after
PCs and VPCs in pacing (71) and Holter studies (75–77),
y the inverse relationship between TS and APCs coupling
ntervals (76), and by the correlation between TS after
PCs and phenylephrine baroreflex sensitivity (77).
However, the magnitude of TS after APCs is signifi-

antly lower than that after VPCs (76). Two explanations
ave been proposed. First, physiological ventricular depo-

arization preceded by atrial contraction produces hemody-
amically more effective contraction with a shorter compen-
atory pause than after VPC. Consequently, APCs lead to
ess pronounced blood pressure perturbations and baroreflex
esponses. Second, the magnitude of TS after VPCs is
etermined not only by the intensity of the late vagal
ctivation but also by the extent of initial heart rate
cceleration. Therefore, the discordant behavior of heart
ate in both HRT phases augments TS after VPCs. Also,
oncordant early and late heart rate deceleration might be
rtificially reducing TS after APCs (76).

odifications of HRT by specific interventions. In pa-
ients without structural heart disease, HRT was reportedly
naffected by recently initiated beta-blockade (36). Differ-
nt effects of selective and nonselective antiadrenergic ther-
py on HRT were reported (80). In a randomized study
omparing metoprolol (beta1-blocker) and carvedilol
beta1-, beta2-, alpha1-blocker) in the subacute phase of

yocardial infarction (MI), there was a trend toward lower p
O in the carvedilol group and significantly higher TS in
he metoprolol group, indicating differential effects of addi-
ional alpha1-adrenoceptor blockade on baroreceptor
esponse.

Chronic beta-blockade has been suggested to restore
bnormal HRT. In a small uncontrolled series of patients
ith advanced congestive heart failure receiving titrated

tenolol therapy, TS was significantly elevated within a
-month follow-up, whereas no alterations were observed in
O (81). However, the observation was made during a
eriod of a significant cardiac function recovery when
oncomitant medication for congestive heart failure was also
dministered. Hence, the selective role of beta-blockers in
mproving HRT in congestive heart failure remains unclear.
ngiotensin-converting enzyme inhibitors and angiotensin

eceptor blockers have also been shown to increase signifi-
antly both HRT components in advanced congestive heart
ailure (82,83).

The effects of chronic beta-blockade on HRT after MI
ave recently been investigated in 2 large longitudinal trials
ssessing HRT in the subacute phase and 12 months after

I in patients with beta-blocker treatment (�90%) opti-
ized according to the present clinical guidelines (84,85).

n both studies, TS remained unchanged within the obser-
ation period. Interestingly, although TO remained unaf-
ected in the subpopulation with 100% revascularization
herapy and �80% concomitant angiotensin-converting
nzyme inhibitor medication (84), it significantly decreased
n the remainder of the population (85).

The effects of muscarinic receptor blockade with atropine
ere also investigated (2,36,86). In patients without struc-

ural heart disease, atropine caused a significant TS decrease
nd a significant TO increase. These effects of atropine were
bserved both with and without concomitant beta-blocker
herapy, confirming that HRT is critically dependent on
eflex parasympathetic activity.

Data on the HRT effects of amiodarone are sparse. In the
nly presently available study in dilated cardiomyopathy
87), all patients on amiodarone had abnormal TO, and
lmost 40% of patients with abnormal TO had also abnor-
al TS. However, it is unclear whether these abnormalities

re due to direct amiodarone effects, or whether the inves-
igated patients on amiodarone had more advanced cardiac
ysfunction reflected by blunted HRT.
Successful coronary reperfusion was found associated

ith a significant TS increase and TO decrease. The
hanges appeared within 2 h after reperfusion without
urther significant alterations (Fig. 5) (88). In patients with
ncomplete reperfusion, however, HRT measures were un-
ffected by the procedure.

Traditional coronary artery bypass grafting procedure
equires clamping of the aorta with extracorporeal circula-
ion. This may interfere with cardiac autonomic control
hrough various mechanisms. Thus, not surprisingly, signif-
cant HRT blunting was reported during the post-operative

eriod (89). Only after 1 year, HRV parameters and TO
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eturned to pre-operative values while TS remained signif-
cantly attenuated. Unfavorable post-operative tachycardia
nd impairment of baroreflex sensitivity caused by mechan-
cal damage of autonomic nervous fibers by aorta clamping

ight be considered the underlying mechanism, despite
uccessful revascularization and improvement in blood sup-
ly to the heart.

linical Use of HRT

ormal and abnormal values. Four studies have reported
O and TS values in healthy volunteers (59,75,90,91). In

hese studies, mean TO ranged from �2.7% to �2.3% and
ean TS ranged from 11.0 to 19.2 ms/R-R interval.
In most clinical studies, however, TO �0% and TS �2.5
s/R-R interval are considered normal. These originally

roposed cutoff values were validated in the data of 3 large
ost-infarction studies (totaling 2,646 patients) (1,92).
The TO and TS variables can be used as separate clinical

ariables or in a combination. In risk stratification studies
see the subsequent section), HRT values are usually clas-
ified into 3 categories: 1) HRT category 0 means TO and

Figure 5 HRT Changes After PCI

Percentage change of turbulence slope and turbulence onset during the first
2 h after percutaneous coronary intervention (PCI) and during hours 6 to 24
after PCI in patients with complete reperfusion (Thrombolysis In Myocardial
Infarction [TIMI] risk score III, green) and incomplete reperfusion (TIMI II, red)
after PCI for acute myocardial infarction. **p � 0.01; ***p � 0.001. Abbrevi-
ations as in Figure 1.
S are normal; 2) HRT category 1 means 1 of TO or TS is n
bnormal; and 3) HRT category 2 means both TO and TS
re abnormal. If HRT cannot be calculated because no or
oo few suitable VPC tachograms are found in the record-
ng, patients who are otherwise in sinus rhythm are classi-
ed as HRT category 0 (92).
isk stratification after MI. In large post-infarction stud-

es, the prevalence of abnormal HRT ranges from 22% to
1% for HRT category 1 and from 8% to 13% for HRT
ategory 2, depending on the acute treatment (1,92). HRT
s also reduced in patients suffering from coronary artery
isease without a history of previous MI (44). This reduc-
ion was shown to be independent of clinical covariates
ncluding left ventricular dysfunction and age.

Clinical evidence of HRT being a powerful post-MI risk
redictor comes from retrospective analyses of 6 large-scale
tudies (1,39,68,93) and from 2 prospective studies (92,94),
oth of which have been specifically designed to validate the
rognostic value of HRT in post-MI patients receiving
tate-of-the-art treatment. The retrospective analyses in-
luded the MPIP (Multicenter Post-Infarction Program)
rial (1,95), the placebo arm of the EMIAT (European

yocardial Infarction Amiodarone Trial) (1,96), the
TRAMI (Autonomic Tone and Reflexes after Acute
yocardial Infarction) trial (39,97), the CAST (Cardiac
rrhythmia Suppression Trials) I and II (68,98,99), and the
INGER (Finland and Germany post-infarction trial)

92,93). The prospective studies were the ISAR (Innovative
tratification of Arrhythmic Risk) HRT trial (92) and the
EFINE (Risk Estimation Following Infarction Noninva-

ive Evaluation) trial (94). Details of HRT post-infarction
tudies are shown in Table 1. All of these studies, with the
xception of CAST data analysis, used the same cutoff
alues for dichotomization of TO and TS, that is, 0% and
.5 ms/R-R interval, respectively. In all of these studies,
mpaired HRT was the strongest electrocardiographic risk
redictor. On univariate analysis, patients with HRT cate-
ory 2 (i.e., TO �0% and TS �2.5 ms/R-R interval) had a
.4- to 11.3-fold risk of subsequent death within 2 years
ompared with patients with normal HRT. The risk of
ubsequent deaths associated with HRT category 2 was
onsistently similarly high as in patients with left ventricular
ysfunction. Figure 6 illustrates the cumulative 2-year
ortality rates for the patients of the MPIP, EMIAT, and

SAR-HRT populations stratified by HRT categories. The
rognostic value of HRT was independent of other predic-
ors such as LVEF, HRV, and arrhythmias. Multivariate
elative risks of HRT category 2 adjusted for known risk
ariables ranged from 3.2 to 5.9. Recently, the REFINE
rial investigated the capacity of combined assessment of
utonomic tone and cardiac electrical substrate to predict
he development of serious outcomes after MI (94). HRT
ategory 1 combined with abnormal T-wave alternans
ssessed 10 to 14 weeks after MI reliably predicted cardiac
eath or cardiac arrest, death from any cause, and fatal or

onfatal cardiac arrest.
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The present data do not allow for identifying the opti-
um time after acute MI for HRT assessment. For logistic

easons, Holter recordings have mostly been made during
he second week after the index infarction (1,39,68,92,93).

owever, 2 studies raised questions about the optimum
ime for HRT assessment after MI (94,100). In a compa-
ably small Turkish study (100), HRT assessed within hours
fter hospital admission was shown to be a highly significant
isk predictor. In the REFINE study, however, HRT-based
isk assessment months after MI was more effective than
isk assessment early after MI (94). From the practical point

tudies (or Substudies) Investigating HRT as a Post-Infarction Risk

Table 1 Studies (or Substudies) Investigating HRT as a Post-In

MPIP EMIAT ATRAMI

Number of patients 577 614 1,212

Inclusion criteria* MI �4 weeks MI �4 weeks MI �4 weeks

Age �70 yrs Age �75 yrs Age �80 yrs

LVEF �40%

Follow-up (months) 22 21 20

End point Mortality Mortality Cardiac mortalit

End points reached (%) 13 14 4

Treatment of acute MI None 60% lysis 63% lysis

Mean LVEF (%) 45 30 49

Beta-blockers (%) 55 32 20§

Univariate analysis

HRT category 2 5.0 (2.8–8.8) 4.4 (2.6–7.5) 6.9 (3.1–15.5)

LVEF �30% 4.0 (2.5–6.4) 2.2 (1.4–3.5) 4.7 (2.6–8.3)

Multivariate analysis

HRT category 2 3.2 (1.7–6.0) 3.2 (1.8–5.6) 4.1 (1.7–9.8)

LVEF �30% 2.9 (1.8–4.9) 1.7 (1.1–2.7) 3.5 (1.8–7.1)

Sinus rhythm was an inclusion criterion in all studies. †Cardiac mortality included fatal and nonf
ears. §At time of Holter recording. �Relative risks presented for turbulence slope �2.5 ms/R-R in
jection fraction was dichotomized at 35%. **The logarithm of turbulence slope was corrected for h
nd EMIAT (European Myocardial Infarction Amiodarone Trial) studies are from Schmidt et al. (1), f
39), for the CAST I and II (Cardiac Arrhythmia Suppression Trials) studies are from Hallstrom et a
or the FINGER (Finland and Germany post-infarction trial) study from Makikallio et al. (93), and fo

HRT � heart rate turbulence; LVEF � left ventricular ejection fraction; MI � myocardial infarcti

χ2 = 32.9
p<0.0001
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Figure 6 HRT Post-Infarction Risk Stratification

Cumulative mortality rates of patients stratified by HRT categories in the populatio
Infarction Amiodarone Trial) (middle), and ISAR-HRT (Innovative Stratification of Arr
involved in the analyses at 0, 6, 12, 18, and 24 months are shown under each gr
HRT study from Barthel et al. (92). Abbreviations as in Figure 1.
f view, HRT assessment prior to hospital discharge seems
o be a reasonable standard in survivors of acute MI.

HRT is mostly depressed during the acute phase of MI
hen the coronary artery is occluded, but recovers immedi-

tely if blood flow is restored by percutaneous coronary
ntervention (84,88). Turbulence slope remains constant up
o 1 year after MI, but there are conflicting reports on TO
hanges over time (84,85). In a study of 416 post-infarction
atients, TO improved 12 months after MI (85), but in a
ore recent study involving 100 patients, TO remained

nchanged (84).

ictor

ion Risk Predictor

CAST ISAR-HRT FINGER REFINE

744 1,455 2,130 322

MI �6 VPC/h MI �4 weeks MI �4 weeks MI

Age �75 yrs Age �75 yrs LVEF �50%

55 22 33 47

Mortality Mortality Sudden death Cardiac death

29‡ 5 2 9

28% lysis 90% PCI 70% PCI 45% PCI

6% lysis 14% lysis 21% lysis

37 56 Not specified 47

30 93 94 92

Not specified 11.4 (5.7–22.8) 4.6 (2.6–8.1)� 2.9 (1.1–7.5)¶

Not specified 7.1 (4.2–12.1) 4.5 (2.5–8.0)# 3.3 (1.4–7.6)

20.4 (10.2–30.6)** 5.9 (2.9–12.2) 2.9 (1.6–5.5) Not specified

Not specified 4.5 (2.6–7.8) Not specified Not specified

rdiac arrest. ‡Cumulative mortality rate only presented for total study population of CAST after 5
¶HRT category �1 versus 0 tested; HRT was assessed 10 to 14 weeks after MI. #Left ventricular
e and VPC count (optimized in CAST data). Data for the MPIP (Multicenter Post-Infarction Program)
TRAMI (Autonomic Tone and Reflexes after Acute Myocardial Infarction) study from Ghuran et al.

for the ISAR-HRT (Innovative Stratification of Arrhythmic Risk HRT) study from Barthel et al. (92),
EFINE (Risk Estimation Following Infarction Noninvasive Evaluation) study from Exner et al. (94).
� percutaneous coronary intervention; VPC � ventricular premature complex.

ISAR-HRT χ2 = 86.9
P<0.0001
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Persistent impairment of HRT after percutaneous coro-
ary intervention in patients with incomplete reperfusion

mplies prolonged baroreflex impairment and is consistent
ith poor prognosis. In a recent study, when HRT was

ssessed within 24 h after early revascularization (mostly
hrombolytic) therapy, blunted HRT in the acute phase of

I was a strong and independent predictor of long-term
ortality (100). Thus, early assessment of HRT may be

etecting pathological loss of reflex autonomic response due
o incomplete reperfusion or severe microvascular dysfunc-
ion after percutaneous coronary intervention.

The HRT-based risk assessment was also reported for
oronary artery bypass grafting. Although pre-operatively
ssessed HRT has been shown to be a good predictor of
utcome (101), the surgery was found to be associated with
significant worsening of HRT parameters in the post-

perative period (89). Predictive usefulness seems thus to be
ost during the post-operative period.

Prognostic studies have consistently demonstrated that
he HRT-based risk prediction is unaffected by beta-blocker
herapy, regardless of whether beta-blocker medication was
sed infrequently (�20%, ATRAMI; 32%, MPIP) (1,39),
oderately (45%, EMIAT) (1), or frequently (�90%,

SAR-HRT) (92), and independently from the frequency of
eperfusion therapy and left ventricular function. This
ontrasts with most of the other mortality predictors after

I and in congestive heart failure for which data in patients
n beta-blockers are presently sparse. The HRT-based risk
ssessment might therefore have an advantage in the beta-
locker era.
In most risk stratification studies, patient age was re-

tricted at 70 to 75 years. Therefore, conclusions drawn
rom these studies cannot be easily extrapolated to older
atients. Presently unpublished findings in the ISAR-HRT
rial suggest that HRT loses prognostic power in elderly
ost-infarction patients (e.g., �80 years of age) (102). This
s likely related to the physiologic age-related baroreflex
ecline.
HRT cannot be measured without VPCs in the Holter

ecording. In most studies, patients without VPCs have
herefore been excluded from the analysis. However, pa-
ients without VPCs and otherwise in sinus rhythm have an
qually good prognosis as do patients with normal HRT
92).

Little controversy exists about the length of the Holter
ecording used for HRT assessment. All studies that re-
orted high predictive values of HRT used 24-h recordings. A
etrospective analysis of HRT in the MADIT II (Multi-
enter Automatic Defibrillator Implantation Trial 2) that used
nly 10-min recordings showed the inappropriateness of
horter recordings (6).

Most post-infarction HRT studies (namely MPIP,
MIAT, CAST, and ISAR-HRT) used total mortality as

he primary end point (1,68,92). The ATRAMI trial used
he composite of fatal and nonfatal cardiac arrest (39). The

INGER trial was designed to assess the value of HRT in d
udden cardiac death prediction (93). Because HRT was
ound to be a strong end point predictor in all of these
tudies, prognostic values of HRT do not seem to be
xclusively associated with any specific mechanism of death,
hich is consistent with the predictive value of other

utonomic markers.
In the ISAR-HRT trial, HRT category 2 alone yielded a

ositive predictive accuracy of 21% at a sensitivity level of
4% (92). These values were comparable with those yielded
y LVEF �30% (23% and 27%, respectively) (92). As with
ther risk factors, risk prediction after MI can be substan-
ially improved if HRT is combined with LVEF and other
redictors such as QRS duration, presence of diabetes
ellitus, or advanced age. The HRT-based risk prediction

s also meaningfully powerful in post-MI patients with
reserved ejection fraction (e.g., �30%). Although most of
he statistical results of combinations of different variables
re based on multivariate Cox models, score schemes might
e more useful in clinical practice. Compared with HRT
ategory 2 alone, combination with other predictors can
ncrease sensitivity by 58% at a comparable level of positive
redictive accuracy. Alternatively, positive predictive accu-
acy may be increased by 66% at a comparable level of
ensitivity (92,103).
isk prediction in heart failure. Neurohumoral activation
ith sympathetic overdrive and progressive hemodynamic
eterioration are the main features of heart failure indepen-
ent of etiology. Consequently, patients with congestive
eart failure are known to have significantly impaired
aroreflex sensitivity as well as reduced HRV. It is thus not
urprising that a high percentage of patients with cardio-
yopathies and/or heart failure also present with abnormal
RT (87). A recent analysis of the MUSIC (Muerte Subita
Insuficiencia Cardiaca [Sudden Death in Heart Failure])

rial reported strong correlations of TO and TS with the
xtent of heart failure (104). This may suggest the possibil-
ty of guiding pharmacological therapy in heart failure
atients. The HRT assessment might become a useful tool
or this purpose, because both TO and TS recover after
ffective pharmacological treatment (81,105).

Data on prognostic value of HRT in patients with
ongestive heart failure is limited. Two large studies (UK-
eart Trial and MUSIC study) investigated the prognostic

ole of HRT in patients with mild-to-moderate heart failure
f ischemic and nonischemic etiology (106,107). In the
K-HEART (United Kingdom Heart Failure Evaluation

nd Assessment of Risk) trial, abnormal TS was found to be
n independent predictor of heart failure decompensation
106). The MUSIC study confirmed prognostic value of TS
n predicting heart failure death, and also suggested that
bnormal TS predicts sudden death in congestive heart
ailure patients (107). The prognostic value of HRT in
atients with heart failure seems to be strongly dependent
n the underlying mechanism. Unpublished analyses of
RT in the EPHESUS (Eplerenone Post-Acute Myocar-
ial Infarction Heart Failure Efficacy and Survival Study)
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108,109) and in the DINAMIT (Defibrillator in Acute
yocardial Infarction Trial) (110,111) suggest that HRT is
powerful predictor of mortality in patients with post-MI
eart failure.
On the contrary, in patients with nonischemic heart

ailure, HRT seems to have a minor role in predicting
utcome. The largest series of patients with nonischemic
eart failure in whom HRT was investigated comprised 242
atients with idiopathic dilated cardiomyopathy taken from
he Marburg Cardiomyopathy database (87). In these pa-
ients, TO predicted transplant-free survival. However,
either TO nor TS predicted arrhythmic events. In patients

ncluded in the Frankfurt dilated cardiomyopathy database,
RT also failed to predict any arrhythmic events (112). In

atients with hypertrophic cardiomyopathy, HRT did not
iffer from control subjects and was not associated with
rognosis (113).
ther clinical potential and specific pathologies. Im-

aired HRT is found in diabetic patients, both with
42,60,114) and without previous MI (115,116). The HRT
mpairment is independent of apparent diabetic neuropathy
ut, as with the reduction of other autonomic markers, it
eflects cardiac autonomic dysfunction. In a large post-
nfarction population, 14% of patients with diabetes mellitus
ad HRT category 2, twice the incidence in patients
ithout diabetes mellitus (114). In diabetic patients suffer-

ng from MI, HRT is a particularly strong predictor of
ortality (114,116).
Patients suffering from mitral valve prolapse have also

mpaired HRT compared with control patients (117). The
nding is likely related to the underlying autonomic dys-
unction rather than to hemodynamic alterations because
mpairment of HRT was not found in mitral regurgitation
117). In patients with mitral stenosis, TO was observed to
e related to the severity of symptoms (118).
Turbulence slope measured at nighttime correlates sig-

ificantly with the apnea-hypopnea index in patients with
bstructive sleep apnea (119). This was not found for TO in
he original study, but in a more recent study, both TO and
S were abnormal during apnea episodes (120).
Smaller studies investigated HRT in a large variety of

athologies ranging from Chagas’ disease (121,122), chil-
ren with dilated cardiomyopathy (123), children with
denotonsillar hypertrophy (124) and obesity (125). Among
ther findings, HRT was found to be impaired in patients
ith overt hyperthyroidism compared with control patients

126). After antithyroid treatment, TS normalizes while
O remains impaired, suggesting ongoing abnormalities of

utonomic function. In depressed post-MI patients, HRT is
mpaired compared with nondepressed patients (127). In a
mall study, HRT was shown to predict restenosis after
oronary intervention (128). The prognostic value of HRT
n patients with congenital heart disease was recently eval-
ated in a heterogeneous study of 43 patients, 50% of whom
ad a systemic right ventricle (129). During follow-up of 27
13 months, HRT category 2 indicated a 70-fold risk of a i
ombined end point of death and successful resuscitation
nd was the strongest predictor on multivariate analysis.
urgical denervation abolishes HRT as suggested by a small
tudy in 10 patients after heart transplantation (115). A
ecent study analyzed HRT in 29 patients with myotonic
ystrophy type 1 (130). Turbulence onset (but not TS) was
ot only significantly impaired compared with control
atients but also identified those patients who were induc-
ble at electrophysiological testing.

uture Directions

espite significant research progress of the HRT field, a
umber of issues (in addition to those already discussed)
emain poorly understood and in need of further investigation.

Because of the need to obtain nominal 24-h Holter record-
ngs for clinically meaningful HRT assessment, short-term
acing studies would have some practical appeal. Presently
vailable data do not allow us to propose a gold-standard
rotocol for such studies although is seems obvious that they
hould include repeated ventricular extrastimuli with different
oupling intervals. In patients with implanted defibrillators,
requent assessment of provoked HRT might also predict the
ikelihood of impending tachyarrhythmias (131,132).

Reproducibility data are lacking in most clinical populations.
ractically, short-term day-to-day reproducibility in post-

nfarction patients and short- to long-term reproducibility in
atients with stabilized congestive failure would be of clear
nterest.

Because of the importance of diabetic neuropathies, the
ossible value of HRT monitoring should also be assessed in
iabetic patients without clinically manifested heart disease.
he same applies to patients with metabolic syndromes in
hom easily accessible autonomic monitoring would have
bvious clinical potential.
Most importantly, however, prospective multivariate inter-

ention (e.g., defibrillator) studies in post-MI patients, includ-
ng not only HRT but a complete spectrum of established risk
redictors are needed to reach a verified consensus on how
ndependent risk factors should ideally be combined and
ractically used for the improvement of ejection fraction–based
isk assessment that has many known shortcomings.

onclusions

RT is a recently recognized electrocardiographic phenome-
on reflecting minute hemodynamic disturbance caused by a
PC. This disturbance is sufficient to induce a baroreflex
ediated response of the sinus node and thus to provide

nsight into the regulation properties of the autonomic nervous
ystem. The standards of measurements are mostly defined
lthough some details need further investigation. Similarly, the
athophysiologic background has been clearly identified. Sev-
ral large-scale retrospective and prospective studies have es-
ablished beyond any doubt that HRT is one of the strongest

ndependent risk predictors after MI. It thus appears that the
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tage has now been reached when HRT might be used in large
rospective intervention studies.
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