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Diabetic retinopathy is a leading cause of vision loss in
working-age adults.1 Nearly all people with 20 or more years
of diabetes develop at least early stages of nonproliferative
diabetic retinopathy (NPDR), which are characterized by
microvascular abnormalities, includingmicroaneurysms, ret-
inal vascular hyperpermeability, exudates, and intraretinal
“dot” hemorrhages.Worsening of thesemicrovascular lesions
associated with severe NPDR can lead to retinal ischemia and
neovascularization, termed proliferative diabetic retinopathy
(PDR). In addition, diabetic retinopathy can also cause
diabetic macular edema (DME), which is characterized by
an accumulation of fluid in the macular region, resulting in
impaired central vision. Although early stages of diabetic
retinopathy have been primarily attributed to the effects of

hyperglycemia, hypertension, and dyslipidemia,2 secondary
intraocular responses play a critical role in disease progres-
sion to PDR andDME. Advanced stages of diabetic retinopathy
are frequently associated with regions of reduced capillary
perfusion, evident by fluorescein angiography, which result
in hypoxia-induced expression of vascular endothelial
growth factor (VEGF). Increased intraocular concentrations
of VEGF in ischemic retinopathies play important roles in
both retinal neovascularization and macular edema.3 There-
fore, a key stage in the pathogenesis of diabetic retinopathy to
its sight-threatening stages involves the progression from
microvascular abnormalities in NPDR to a critical threshold
of reduced retinal perfusion leading to retinal ischemia. The
appearance of retinal ischemia and hemorrhages has
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Abstract Retinal ischemia and hemorrhage are hallmarks of worsening diabetic retinopathy,
which can lead to neovascularization, macular edema, and severe vision loss. Although
diabetes alters expression of clotting factors and their activities, and increases retinal
microthromboses, the effects of thrombotic processes on the pathogenesis of diabetic
retinopathy are not fully understood. In addition to the roles of coagulation and
fibrinolytic cascades in thrombosis and hemostasis, components in these systems
also mediate multiple effects on the vasculature that promote inflammation. Plasma
kallikrein, thrombin, and urokinase are increased in diabetic retinopathy, and exert
proinflammatory effects that contribute to retinal vascular dysfunction. The accumula-
tion and activation of these and additional coagulation factors in the vitreous due to
hemorrhage and chronic retinal injury in the diabetic retina may contribute to
worsening of retinal inflammation and capillary dysfunction, which lead to retinal
ischemia and edema. Further understanding of the role for specific coagulation factors
in diabetic retinopathy may suggest new therapeutic opportunities for this vision-
threatening disease.
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implicated roles for coagulation and fibrinolytic cascades in
the pathogenesis of diabetic retinopathy. However, while the
effects of diabetes and hyperglycemia on coagulation and
fibrinolytic systems, and their respective roles in thrombosis,
havebeenwell documented,4,5 relatively little is knownabout
the impact of these systems on diabetic retinopathy. In
addition, components of these systems also exert potent
effects on inflammation, which may also contribute to the
progression of diabetic retinopathy to DME independently of
retinal ischemia.6 This article examines the potential inter-
actions between intraocular thrombotic and inflammatory
systems in the pathogenesis of diabetic retinopathy.

Inflammation, Thrombosis, and Retinal
Ischemia

At the cellular level, chronic diabetes induces retinal pericyte
loss and capillary endothelial cell apoptosis, which impairs
blood retinal barrier function and blood flow.7 These changes
have been associated with the formation of acellular capillar-
ies, which have been observed in trypsin digests of retinal
microvascular tissue obtained from diabetic experimental
animal models.8 Several mechanisms, including upregulation
of the angiopoietin-2/Tie2 ligand/receptor system, have been
implicated in contributing to pericyte loss and increased
acellular capillary segments in retina from diabetic rodents.9

However, less is known about the processes that may con-
tribute to degenerate capillaries in diabetic human retina and
their significance in the transition from NPDR to ischemia
retinopathy.

Diabetic retinopathy in animal models is associated with
inflammation, including, for example, increased retinal
expression of intercellular adhesion molecule-1 (ICAM-1)
and leukocyte adhesion in capillaries and venules.10 Leuko-
cyte α4 integrin/vascular cell adhesion molecule (VCAM-1)
signaling is also implicated in leukocyte adhesion and vascu-
lar leakage in diabetic retinopathy. Blockade of α4 integrin
reduces retinal levels of VEGF, TNFα, and NF-κB activity, as
well as retinal vascular hyperpermeability and leukocyte
adhesion in diabetic rats.11 Although hyperglycemia-induced
leukostasis has been implicated in retinal capillary apoptosis
and occlusion in animal models of diabetic retinopathy,10 the
significance of this mechanism to ischemic diabetic retinop-
athy, PDR, and DME is not yet available. Insulin resistance and
hypertension also increase leukocyte binding to the retinal
endothelium,12,13 without evidence of ischemic retinal dis-
ease, suggesting that chronic effects on leukostasis are not
sufficient to cause significant retinal ischemia. A recent report
has shown that retinal ICAM-1 expression and leukostasis are
not altered in moderately controlled hyperglycemia (HbA1c
6–10%) and leukostasis in retinal arteries is decreased in a
rodent model of type 2 diabetes with severe hyperglycemia
(HbA1c >10%).14 Moreover, diabetes in humans can occur for
decades before or without onset of ischemic retinopathy.
Thus, it is unclear how the chronic effects of diabetes on
leukostasis explain the onset of retinal ischemia in the
progression from NPDR to PDR for a subset of affected
patients. As mentioned earlier, the transition of diabetic

retinopathy to PDR and DME is also associatedwith increased
intraocular concentrations of VEGF. Intravitreal injection of
VEGF induces retinal vascular leakage, hemorrhage, and
leukostasis.15,16 Repeated intravitreal injections of VEGF in
primates cause retinal capillary nonperfusion and neovascu-
larization.17 A recent study has reported that intravitreal
administration of ranibizumab, an anti-VEGF monoclonal
antibody, reduced, but did not eliminate, capillary nonperfu-
sion in DME patients.18 These findings suggest that VEGF, as
well as potentially other cytokines and metabolic factors,
induces thromboinflammatory processes in the retina that
contribute to capillary nonperfusion and ischemia.

Diabetes is a procoagulate state and retinalmicrothrombo-
ses occur in diabetic retinopathy. Increased prevalence of
platelet–fibrin microthrombi positive for factor XIII immuno-
staining has been observed in the retinal microvasculature
both in donor human eyes from diabetic subjects and in
experimental rodentmodels of diabetes, comparedwith their
respective controls.19,20 Although these microthrombi are
associated with capillary and venule occlusion, their signifi-
cance to retinal ischemia, PDR, and DME is not yet available. It
is well established that diabetes induces endothelial dysfunc-
tion and injury, which can lead to increased expression of
proinflammatory adhesion molecules, apoptosis, and
increased leukocyte and platelet adhesion in the retinal
microvasculature.10 Immunohistochemical analyses show
that microthrombi are colocalized with apoptotic retinal
endothelial cells,19,20 suggesting that microthromboses are
concomitant with or secondary to capillary damage. Blood
platelets are more likely to adhere to the diabetic endotheli-
um than healthy vessels,21 which may contribute to the
occlusion of injured retinal capillaries. In a cross-sectional
study of 227 patients with type II diabetes mellitus (119 with
vs 108 without diabetic retinopathy) and 169 nondiabetic
subjects, it was demonstrated that polymorphism in platelet
α2β1, a receptor for collagen important for platelet adhesion
and thrombus formation, is an independent risk factor for
retinopathy.22 Taken together, platelet adhesion to the in-
jured diabetic endothelium may contribute to both ischemia
and inflammation in diabetic retinopathy.

Retinal Hemorrhage and Inflammation

Diabetic retinopathy is also characterized by the presence of
small “dot” intraretinal hemorrhages. The number and sever-
ity of these hemorrhages are frequently increased during
progression from mild to moderate to severe stages of NPDR.
The occurrence of these hemorrhages has been attributed, in
part, to vascular hyperpermeability and microaneurysms.
Although diabetes increases retinal vascular permeability
via the disruption of tight junction integrity in the retinal
endothelium, the loss of tight junction function alonemaynot
be sufficient to fully explain these dot hemorrhages. Intra-
retinal hemorrhages require disruption of adherens junctions
and breakdown of the basement membrane for erythrocytes
to escape from the vasculature. In addition to these small
intraretinal hemorrhages, larger flame-type hemorrhages
can occur in diabetic retinopathy, especially in the presence
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of hypertension, which is an important risk factor for reti-
nopathy progression. Moreover, nascent vessels that are
generated during PDR are fragile, usually grow anteriorly
into the vitreous, and are vulnerable to rupture and hemor-
rhage. Indeed, PDR can cause vitreous hemorrhage, leading to
vitreoretinal disorders and tractional retinal detachment.
Although intraocular hemorrhages occur at multiple levels
in diabetic retinopathy and are commonly associated with
advance stages of the disease, the effects of hemorrhage on
retinopathy progression are not fully understood.

Proteomic analyses of vitreous fluid obtained from
patients with advanced diabetic retinopathy have revealed
that intraocular hemorrhage and plasma extravasation
markedly alter the protein composition of the vitreous
humor.23,24 These studies have identified components of
both coagulation and fibrinolytic cascades in the vitreous in
diabetic retinopathy including prothrombin, factor V, factor
XII (FXII), fibrinogen, antithrombin III, α1-antitrypsin, and
heparin cofactor 2 (►Fig. 1). In addition to their roles in
thrombosis and hemostasis, these coagulation and fibrino-
lytic factors increase inflammatory responses that have been
implicated in diabetic retinopathy. We identified increased
levels of the contact activation system components, including
plasma kallikrein, FXII, and high-molecular-weight kininogen

(HK) in the vitreous from patients with advanced diabetic
retinopathy.23 We have also reported that intravitreal injec-
tion of plasma kallikrein exerts potent effects on retinal
vascular hyperpermeability, leukostasis, and edema.23,25,26

HK and FXII are plasma kallikrein’s primary substrates.
Cleavage of HK by plasma kallikrein results in the production
of bradykinin and thereby activation of B1 and B2 receptors,
which are G protein–coupled receptors that contribute to
retinal vascular inflammation and dysfunction in diabetes.6

In addition, several additional substrates for this serine
protease have been identified in the secretome from astro-
cytes and pericytes, including extracellular matrix (ECM)
proteins.26,27 Liu et al have demonstrated that plasma kalli-
krein binds ECM, which interferes with collagen-induced
platelet activation and impairs cerebral hemostasis in diabe-
tes.28 Abdallah et al29 have shown that plasma kallikrein also
activates protease activated receptor (PAR) 1 and 2 on vascu-
lar smooth muscle cells, resulting in increased TNFα release.
Intravitreal injections of plasma kallikrein in rats induce
retinal hemorrhages, which appears similar to intraretinal
dot hemorrhages observed in NPDR.26 Plasma kallikrein also
causes proteolysis of ECM components including collagen IV,
a major constituent of the basement membrane.26,27 The
collagenase-like activity of plasma kallikrein may contribute

Fig. 1 Intraocular coagulation and fibrinolytic cascades in diabetic retinopathy. Advanced diabetic retinopathy is characterized by the presence of
intraretinal hemorrhage and capillary nonperfusion, mediated in part by leukostasis and microthrombi. Intraocular hemorrhage and plasma
extravasation markedly alter vitreous protein composition in patients with advanced diabetic retinopathy. Increased levels of coagulation and
fibrinolytic factors has been identified in the vitreous of patients with advanced diabetic retinopathy including plasma kallikrein (PK), factor XII
(FXII), prothrombin, and urokinase plasminogen activator (uPA) (outlined in dark red). Other components detected also include high-molecular-
weight kininogen (HK), plasma prekallikrein (PPK), C1 inhibitor (C1INH), carbonic anhydrase 1 (CA-1), and plasminogen (Plg).
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to degradation of ECM and weakening of the basement
membrane, thereby increasing susceptibility to vascular rup-
ture and hemorrhage. Thus, the inflammatory effects of the
contact activation system appear to be mediated by both
bradykinin-dependent and bradykinin-independent mecha-
nisms. The vitreous in PDR also contains remnants of lysed
erythrocytes, including carbonic anhydrase 1 and platelet and
endothelial microparticles,23,30 which have been implicated
in activating the contact system and thrombin.31 Gao et al
have shown that intraocular hemorrhage results in the re-
lease of carbonic anhydrase 1 from erythrocytes, leading to
increased plasma kallikrein catalytic activity.23 This response
was inhibited by either C1 inhibitor, the primary endogenous
serpin serine protease inhibitor of the kallikrein–kinin sys-
tem, or bradykinin BK1 and BK2 receptor antagonists. These
findings indicate that the presence of lysed erythrocyte
components within local ocular hemorrhage can trigger
subsequent contact system components mediating retinal
vascular damage in diabetic retinopathy. As mentioned
above, diabetic retinopathy is also associated with platelet
microparticles and adherent platelets, which may release
polyphosphates and trigger FXII-mediated contact system
activation.32 These pathways could contribute, in part, to
the effects of microthrombosis and hemorrhage on retinal
inflammation.

In addition to the contact system, several other coagula-
tion factors have been implicated in contributing to retinal
inflammation in diabetic retinopathy. Proteomic data
revealed that prothrombin is increased approximately
5-fold and fibrinogen (α, β and gamma chain) levels were
elevated more than 11-fold in the vitreous obtained from
patients with PDR compared with nondiabetic subjects.24 A
recent report has implicated increased thrombin activity
within the human vitreous of proliferative vitreoretinopathy
patients on retinal inflammation.33 Specifically, retinal pig-
mented epithelial cells exposed to vitreous samples contain-
ing high thrombin activity resulted in increased production of

CCL2, CXCL8, and IL-6. Further studies demonstrated that
thrombin and factor Xa stimulates IL-6, IL-8, MCP-3, and GM-
CSF production by retinal pigmented epithelial cells via a PAR-
1 and NF-κB pathway.34 Moreover, thrombin-mediated acti-
vation of PAR-1 and NF-κB has also been shown to increase
VCAM-1 and ICAM-1 expression—two key adhesion mole-
cules implicated in leukocyte adhesion in diabetic
retinopathy.10,35

Urokinase plasminogen activator (uPA), a component of
the fibrinolytic system, is increased in epiretinal membranes
obtain from patients with PDR36 and retinal uPA receptor
(uPAR) expression is increased in diabetic rats.37 Upon acti-
vation, uPA converts plasminogen to plasmin,whichmediates
fibrinolysis and can activate matrix metalloproteinases. In
addition, activation of the uPA/uPAR pathway also contrib-
utes to increased retinal vascular permeability in diabetic rats
through proteolytic disruption of VE-cadherin.38 El-Remessy
et al37 have also reported increasedmatrixmetalloproteinase
MMP-9 activity downstream of uPA/uPAR signaling in dia-
betic mice retina which leads to ECM disruption in retinal
vessels. Absence of uPAR in uPAR�/� mice results in blockade
of diabetes-induced increase in retinal vascular permeability
and MMP-9 activity. Interestingly, VEGF can also directly
influence levels of uPAR receptor and increase the perme-
ability of retinal endothelial cells through the uPAR–GSK3β/β-
catenin signaling pathway.37 Taken together, these reports
suggest that retinal inflammation induces endothelial dys-
function and apoptosis, which leads to microthrombosis and
hemorrhage. In addition, the extravasation of activated coag-
ulation factors can further promote retinal inflammation and
endothelial dysfunction (►Fig. 2).

Multiple studies have reported that anti-inflammatory
interventions, including salicylates, decreased nuclear trans-
location of NF-κB, expression of proinflammatory proteins,
apoptosis, and capillary loss in diabetic rat retina.8 The
majority of clinical studies have not detected a significant
effect of aspirin on diabetic retinopathy, reviewed by

Fig. 2 Activated coagulation factors promote retinal vascular permeability, leukostasis, and inflammatory cytokines. Extravasation increases
intraocular levels of thrombin, plasma kallikrein, and uPA, which trigger inflammatory processes in the retina. Thrombin signals via protease-
activated receptor 1 (PAR1) and NF-κB to induce inflammatory cytokines. Plasma kallikrein generates bradykinin, which can signal through B2R to
increase vascular permeability, leukostasis, and edema. Plasma kallikrein also has collagenase-like activity that mediates extracellular matrix
(ECM) degradation. Active uPA/uPAR signaling mediates disruption of the blood retinal barrier through proteolytic cleavage of VE-cadherin.
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Bergerhoff et al.39 However, recent findings from the MAD-
IABETES study reported an association of aspirin use in
patients with type 2 diabetes with an increased incidence
of diabetic retinopathy.40 While salicylates and other anti-
inflammatorymolecules have been shown to exert protective
effects on the retina in diabetic animal models, the specific
clinical effects of this therapeutic approach on retinal inflam-
mation, thrombosis, and hemostasis are not yet available.

Diabetes and Retinal Vein Occlusion

Retinal vein occlusion is an important cause of retinal vascu-
lar disease and vision loss, with an overall incidence in of
approximately 1 to 2% in people older than 40 years.41

Santiago et al42 have examined the potential effects of
diabetes on the prevalence of central retinal vein occlusion
(CRVO) and its outcomes. This retrospective chart review of
19,648 subjects over a 4-year period showed that CRVO was
observed at a similar prevalence in diabetic and nondiabetic
subjects; however, diabetes was associated with worse ana-
tomical outcomes, including disc neovascularization and
panretinal photocoagulation. CRVO patients with diabetes
in this study included both type 1 and type 2 diabetics
with 27.1 � 10 and 12.1 � 6.7 years of diabetes duration,
respectively. Thus, the effects of diabetes on CRVO outcome
may be mediated, in part, by retinal vascular abnormalities
associated with diabetic retinopathy. While the prevalence of
CRVO is increased in several hypercoagulable conditions,
reviewed in a study by MacDonald,41 diabetes appears to
worsen CRVO outcomes rather than increase its incidence.

Conclusion

Capillary nonperfusion and intraretinal hemorrhage are
associated with advanced stages of diabetic retinopathy.
Although increased prevalence of microthrombi has been
detected in the diabetic retina, their significance to retinal
ischemia is unknown. In contrast, marked increases in coag-
ulation and fibrinolytic factors, including plasma kallikrein,
thrombin, and urokinase, have been detected in ocular sam-
ples from patients with advanced diabetic retinopathy. In
addition to their roles in thrombosis and hemostasis, these
factors promote retinal inflammation, vascular dysfunction,
and proteolytic disruption of ECMand intercellular junctional
complexes. Intraocular hemorrhage, endothelial dysfunction,
and breakdown of the blood retinal barrier appear to con-
tribute to the extravasation and activation of coagulation
components in the retina and vitreous in diabetes. Inhibition
of these thromboinflammatory pathways may provide ther-
apeutic opportunities for diabetic retinopathy, especially for
advanced stages of this disease.
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