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The diagnostic terms hemolytic uremic syndrome (HUS) and

thrombotic thrombocytopenic purpura (TTP) are based on

historical and overlapping clinical descriptions. Advances in

understanding some of the causes of the syndrome now

permit many patients to be classified according to etiology.

The increased precision of a diagnosis based on causation is

important for considering logical approaches to treatment

and prognosis. It is also essential for research. We propose a

classification that accommodates both a current

understanding of causation (level 1) and clinical association

in cases for whom cause of disease is unclear (level 2). We

tested the classification in a pediatric disease registry of HUS.

The revised classification is a stimulus to comprehensive

investigation of all cases of HUS and TTP and is expected to

increase the proportion of cases in whom a level 1 etiological

diagnosis is confirmed.
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New concepts of causation suggest an improved diagnostic
classification of hemolytic uremic syndrome (HUS)1 and
thrombotic thrombocytopenic purpura (TTP),2 two clini-
cally defined syndromes with the shared pathology of
thrombotic microangiopathy (TMA).3,4 Broadly, subgroups
of HUS/TTP can be diagnosed at two levels. The first is by
etiology, the second by clinical features or associations. The
proposed classification is therefore split into two sections:
part 1 in which concepts of etiology are reasonably advanced,
and part 2 where clinical associations are used to describe
patients for whom the cause remains unclear (Table 1). The
division is admittedly arbitrary, and advancing knowledge is
expected to redistribute cases from part 2 to 1. Future
revisions will be needed. Subgroups re-defined by etiology
often have a subgroup-specific prognosis and require specific
therapies.

PROPOSED CLASSIFICATION: PART 1, ETIOLOGY ADVANCED
Shiga and verocytotoxin (shiga-like toxin)-producing bacteria

The major cause of HUS in childhood is infection with
verocytotoxin (shiga-like toxin)-producing bacteria, usually
enterohemorrhagic Escherichia coli (VTEC/STEC),5 and in
some tropical regions Shigella dysenteriae type I.6,7 Verocyto-
toxin-producing Citrobacter freundii, has also been reported.8

In America and the UK most cases are associated with
E. coli serotype O157:H7,9–12 while other serotypes such as
O26, O111, O103, and O145 are increasingly reported in
Europe and elsewhere.13–15 The epidemiology has been
extensively studied. Patients are usually pre-school chil-
dren.16–18 VTEC strains produce various toxins, the major
ones being verocytotoxin-1 (Stx1) and verocytotoxin-2
(Stx2). Verocytotoxin-1 differs by one amino acid from
Shiga toxin produced by Shigella dysenteriae type 1.
Verocytotoxin-2 has multiple variants that are closely related
to each other, but have 55–60% homology to verocytotoxin-
1. HUS is mostly caused by verocytotoxin-2-producing
strains.11,14,15

The disease begins after an incubation of 4–7 days with
abrupt onset of diarrhea, usually bloody, with abdominal
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pain. Microangiopathic hemolytic anemia, thrombocyto-
penia and acute oliguric renal failure occur 2–10 days later.
The diagnosis of VTEC infection is made on stool culture,
identification of toxin in the stools, or by serological response
to the relevant O-serotype. Verotoxin itself is implicated in
the pathogenesis, both from the epidemiology and from
laboratory models. A prothrombotic state evolves prior to the
acute renal failure,19 and the specific pathological finding is
glomerular thrombosis.20,21

With supportive therapy the mortality in children is o5%
(Shigella dysenteriae type 1 excepted). Approximately 75%
appear to make a full recovery when assessed up to 5 years
after onset.22 Relapse is extremely rare.

Streptococcus pneumoniae, neuraminidase, and T-antigen
exposure

This is a distinctive disorder complicating pneumococcal
infection, usually septicaemia, pneumonia with empyema, or
meningitis with subdural collections.23 Patients, usually o2
years old, present with marked microangiopathic hemolytic
anemia. The acute mortality is about 25%.16 HUS relapse has
not been described.

Pneumococcal neuraminidase has been identified in
plasma.24 It causes de-sialation of the glycocalyx of many

cells exposing the Thomsen–Friedenreich (T-) antigen that is
normally covered by sialic acid.25 T-antigen exposure on red
cells is detected using the lectin Hypogeae. An immunoglo-
bulin M cold antibody occurring naturally in human serum
causes polyagglutination in vitro. Unlike other forms of HUS
there is a positive Coomb’s test. T-anti-T interaction on red
cells, platelets, and endothelium was thought to explain the
pathogenesis, but the role of the anti-T cold antibody in vivo
is questionable.26

Genetic disorders of complement regulation

Mutations in the genes for complement factor H (FH), factor
I (FI), and membrane co-factor protein (MCP), also known
as CD46, are associated with HUS.

FH, which is abundant in plasma, binds to polyanionic
sites on host cells surfaces. Here it captures C3b generated by
the alternative pathway and prevents formation of the C3
convertase, C3bBb, by factor B. This prevents amplification
of the complement cascade and is a major reason why host
cell surfaces are normally defended from alternative pathway
activity.27 FH is known to bind to vascular endothelium,
erythrocytes, and platelets.28–30

FH mutations have been found in a fifth of families with
HUS and in about 8% in sporadic cases.31,32 Most patients
have heterozygous mutations that affect the C-terminal,
reducing binding to C3b/C3d, heparin,33 and endothelial
cells.29,34,35 Mutations leading to truncation of the FH
molecule or the inability to be exported from the endoplasmic
reticulum have also been described.36 An association between
three frequent single nucleotide polymorphisms of FH and
susceptibility to HUS has been suggested.37,38

The phenotype is variable and HUS may present at any
age, although homozygous or compound heterozygous FH-
deficient patients are more likely to manifest HUS in early
life.39 The plasma concentration of C3 may be normal or
persistently low. Striking features include severe hyperten-
sion, a high risk of relapse, and poor prognosis, 50% of cases
progressing to end-stage renal failure. The risk of graft loss
after transplantation approaches 80%, mostly reflecting
disease recurrence.40,41

Mutations have been found in the genes encoding both
FI42,43 and MCP (CD46).44,45 FI, a co-factor for FH, cleaves
C3b interrupting the complement cascade before the genera-
tion of the anaphylotoxin C5a and the membrane attack
complex C5b–C9 (reviewed by Zipfel et al.46). Complement
C5a and the membrane attack complex play an essential
pathogenetic role in certain laboratory models of HUS 47,48

FI circulates in plasma and, using FH, MCP, or CR1 as a
co-factor, cleaves C3b to iC3b, or, using C4-binding protein,
MCP or CR1 as a co-factor, cleaves C4b. All HUS patients so
far described except one 43 are heterozygous for stop codons
that truncate protein production, and plasma concentrations
of FI may be reduced. MCP, a membrane-bound regulator
expressed in glomerular endothelium also acts as a co-factor
for the cleavage of C3b and C4b by FI. Heterozygous and
homozygous MCP mutations have been identified in more

Table 1 | Classification of HUS, TTP, and related disorders

Part 1: etiology advanced
1.i Infection induced

(a) Shiga and verocytotoxin (shiga-like toxin)-producing bacteria;
enterohemorrhagic Escherichia coli, Shigella dysenteriaen type
1, Citrobacter

(b) Streptococcus pneumoniae, neuraminidase, and T-antigen
exposure

1.ii Disorders of complement regulation,
(a) Genetic disorders of complement regulation
(b) Acquired disorders of complement regulation, for example

anti-FH antibody

1.iii von Willebrand proteinase, ADAMTS13 deficiency
(a) Genetic disorders of ADAMTS13
(b) Acquired von Willebrand proteinase deficiency; autoimmune,

drug induced

1.iv Defective cobalamine metabolism

1.v Qinine induced

Part 2: Clinical associations: etiology unknown
2.i HIV
2.ii Malignancy, cancer chemotherapy and ionizing radiation
2.iii Calcineurin inhibitors and transplantation
2.iv Pregnancy, HELLP syndrome and oral contraceptive pill
2.v Systemic lupus erythematosis and antiphospholipid antibody

syndrome
2 vi Glomerulopathy
2.vii Familial, not included in part 1
2.viii Unclassified

FH, factor H; HELLP, HEmolytic anemia, elevated Liver enzymes, and Low Platelets;
HIV, human immunodeficiency virus; HUS, hemolytic uremic syndrome; TTP,
thrombocytopenic purpura.
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than 15 cases. These are predicted to cause loss of C3b and
C4b recognition or loss of the C-terminal of the protein.
Reduced expression on nucleated cells has been shown in
some patients. Compared to FH or FI mutations, those with
MCP abnormalities appear less likely to have disease
recurrence after transplantation, probably because the donor
organ retains normal MCP expression.

The diagnosis requires genetic expertise. A low C3 cannot
be relied on to indicate deficient function of a membrane-
bound complement regulator, nor does a normal plasma
concentration of FH or FI exclude the possibility of a
functional defect. Conversely, low C3 is a positive indicator,
and in families with HUS those with hypocomplementemia
are at increased risk of developing the disorder.49 The fact
that three different regulator abnormalities have been found
so far supports the concept that failure to regulate
complement on host tissues is etiologically relevant. It raises
the possibility that other regulatory defects, either individual
or compound,50 will be found.

Acquired disorders of complement regulation

Evidence of immunoglobulin G autoantibodies to comple-
ment FH has been reported in three children with relapsing
HUS.51 The plasma concentration of FH, and the FH gene
were normal. FH autoantibody was identified by enzyme-
linked immunosorbent assay, and shown to interfere with FH
binding to the C3bBb convertase. These children also had
antinuclear antibody but no other autoantibodies. Comple-
ment C3 was low in two cases as was factor B indicating
alternative pathway activation. This strongly suggests that an
acquired defect in complement regulation can mimic the
inherited pattern outlined above.

Genetic disorders of von Willebrand factor-cleaving protease
(ADAMTS13)

The finding of unusually large multimeric forms of von
Willebrand factor (vWF), similar in size to those secreted by
cultured endothelial cells in vitro, in the plasma of patients
with HUS/TTP and chronic relapsing TTP was first reported
by Moake et al.52,53 These large multimers cause platelet
agglutination at high shear stress. In 1997, Furlan et al.54

identified severe deficiency (o7% of normal plasma activity)
of a specific protease (vWFCP) that cleaves multimeric vWF
protein in patients with chronic relapsing TTP. This was
confirmed in a large group of patients with familial and non-
familial TTP.55,56 The vWFCP deficiency was shown to be
either constitutional or due to autoantibodies. Lower activity
occurs in liver disease, cancers, chronic inflammatory and
metabolic conditions, pregnancy and in the newborn, but not
the extremely low levels associated with TTP.57,58

vWFCP cleaves multimeric vWF released from the
endothelium and platelets into monomeric subunits at
position 842–843. It has been purified, the gene se-
quenced,59,60 and shown to be a member of the ADAMTS
family of metalloproteases and designated ADAMTS13.
ADAMTS is an acronym for ‘a disintegrin-like and

metalloprotease with thrombospondin type I repeats’.
ADAMTS13 is encoded on chromosome 9q34 and patients
with familial relapsing TTP have mutations throughout the
gene.61–64 vWFCP is produced by hepatic stellate cells65–67

and has a plasma half-life of 2–3 days.68 Several assays of
vWFCP activity and vWFCP-inhibiting autoantibodies (see
below) have been developed.69 Although reliable and
comparable, they are labor intensive and specialized.

Chronic relapsing TTP due to inherited vWFCP deficiency
presents with thrombocytopenia and hemolytic anemia
usually in the neonatal period.63,70 Later, recurrent hemolysis
and thrombocytopenia recur at intervals usually every
3rd–4th week. About 50% of the patients with vWFCP
activity below 5% of normal have their first attack before the
age of 5 years. In the others the diagnosis is made in
adulthood,71 and not all patients present with the complete
diagnostic criteria of HUS/TTP. If diagnosed early, chronic
relapsing TTP/HUS due to constitutional vWFCP deficiency
can be reversed or prevented by infusion of fresh-frozen or
virus inactivated plasma or at 2–3 weeks interval without
concurrent plasmapheresis.

Acquired disorders of vWF-cleaving protease

Severely decreased vWFCP activity in patients with acute
acquired, non-familial TTP is mostly due to inhibitory
immunoglobulin G autoantibodies.55,56 These are found in
48–80% of adult patients and are transient or intermittent in
the majority. This form of TTP/HUS is mainly seen in adults
and is usually a single acute episode, although recurrences
have been reported in 11–36% of patients.

Historically, patients with untreated TTP had a mortality
approaching 90%, and plasma exchange using fresh-frozen
plasma reduced this to 20%.72 Patients with vWFCP
deficiency due to autoantibodies usually respond to
intensive plasmapheresis but may require additional im-
munosuppression or even splenectomy. Rituximab, the
monoclonal antibody against CD20 on B lymphocytes is
also effective.73–75

Some cases of acquired ADAMTS13 deficiency have been
linked to the platelet inhibitors ticlopidine and clopidogrel.
Ticlopidine-associated TTP76,77 occurs in one per 1600–5000
patients treated, usually within 1 month of starting. Besides
the hemolytic anemia and thrombocytopenia, 75% of cases
developed neurological manifestations, and 30% renal
insufficiency. Plasmapheresis reduces the mortality.77 Auto-
antibodies inhibiting ADAMTS13 have been detected in
ticlopidine-associated TTP.78 Clopidogrel-associated TTP
usually presents within 2 weeks of starting the drug, is more
prone to recurrence than with ticlopidine, and requires more
plasma exchanges. The incidence of clopidogrel-associated
TTP is similar to the general population (about 3.7 cases per
million) making a causal relation less certain. However,
antibody-induced ADAMTS13 deficiency has been reported
in two cases.79
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Defective cobalamin metabolism

This autosomal recessive form of HUS is attributed to
an inborn error of cobalamin-C metabolism.80 The bio-
chemical characteristics of cobalamin-C deficiency are
hyperhomocysteinemia and methylmalonic aciduria. High
levels of homocysteine might be responsible for the vascular
manifestations.

Patients with cobalamin-C deficiency usually present in
the early days and months of life with failure to thrive, poor
feeding, and vomiting. Rapid deterioration occurs due to
metabolic acidosis, gastrointestinal bleeding, hemolytic
anemia, thrombocytopenia, severe respiratory and hepatic
failure, and renal insufficiency.81,82 It is likely that some die
undiagnosed. Besides the early fulminant course, a more
protracted disease can manifest later in childhood and
adolescence.83–85 Renal biopsy showed a chronic TMA.
Serum homocysteine can be 10 times normal values and
urinary methylmalonic acid markedly increased but correct
with daily hydroxycobalamin administration.85

Quinine

Quinine, whether as a medication or food additive, is
associated with TTP/HUS.86,87 In a series of HUS/TTP
patients 11% reported taking quinine compared to 6% taking
other drugs.88 In sensitized patients the typical clinical
pattern is an abrupt onset of chills, myalgia, vomiting, and
oliguria immediately after quinine exposure. Anemia is often
mild. Patients can be shown to have antibodies that recognize
different glycoprotein epitopes on platelets, red cells, and
leukocytes.89,90 This interaction is quinine dependent,
suggesting that a neoantigen is formed. In platelets, the
antibody has been found to cross-react with glycoprotein IIb/
IIIa and sometimes Ib/IX. The disorder is comparatively mild
and remits if plasma exchange is started early enough and
quinine avoided. ADAMTS13 plasma activity is typically
normal.

PROPOSED CLASSIFICATION: PART 2, CLINICAL
ASSOCIATIONS; ETIOLOGY UNKNOWN
Human immunodeficiency virus

Human immunodeficiency virus (HIV) positivity and
acquired immune deficiency syndrome are risk factors for
renal disease91 and HIV nephropathy can include HUS. HUS
appears more prevalent in the HIV population92 and has a
high mortality in advanced acquired immune deficiency
syndrome. In one series it occurred in a third of HIV-infected
adults and was the most frequent cause of acute or rapidly
progressive renal failure.93 HIV-associated HUS/TTP is rarer
in childhood.94 Exceptionally, HIV-positive patients develop
other forms of HUS, for example one patient had complete
deficiency of vWF-cleaving protease ADAMTS13 having
developed an antiprotease autoantibody,95 but in the
majority alternative explanations of causation have not been
sought. It is assumed that the virus directly affects the
endothelium causing TMA as has been shown in a primate
model.96

Malignancy, cancer chemotherapy, and ionizing radiation

Disseminated carcinoma, usually gastric,97 prostatic,98 or
colon,99 has been associated with HUS/TTP. In the registry of
the Lombardi Cancer Research Center, Georgetown University,
Washington DC, 85 patients met the criteria of hemolysis,
thrombocytopenia, and serum creatinine above 1.6 mg/dl.100

Eighty nine percent of them had adenocarcinoma, 26% being
gastric cancer. HUS/TTP developed before cancer was
diagnosed in a third of patients giving credence to the primary
association. However, all except one received mitomycin at
some point and it is unclear in many cases whether the
association is directly with malignancy or with drugs used in its
treatment. The same argument can be raised with irradiation.
Infectious complications of cancer such as cytomegalovirus
infection101 and human herpes virus-6102 may also play a role.

Mitomycin, an antimitotic used mainly in gastric and
breast cancer, is associated with HUS and histological
features of TMA.103 Some cases improve with steroids and
plasma exchanges.104 Cattell105 was able to induce TMA by
injecting mitomycin into the renal artery of rats, supporting a
causative role. Gemcitabine, a related anticancer drug, used
for pulmonary, pancreatic, and urothelial carcinoma, is also
thought to be the cause of HUS/TTP.106,107

Radiation nephropathy presents with hypertension pro-
teinuria or renal impairment up to a year after exposure.
Cases with superadded microangiopathic hemolytic anemia
typical of HUS are rare. The renal cells most sensitive to
ionizing radiation are glomerular endothelium and tubular
epithelium. In radiation nephropathy, electron microscopy
shows that glomerular endothelial cells are swollen, separated
from the basement membrane by electron-lucent material or
lost entirely. A late finding is fibrinoid necrosis and
thrombosis of arteries and arterioles. This resembles TMA
adding credence to the association. Modern concepts of
pathogenesis have not been applied.

Calcineurin inhibitors and transplantation

HUS/TTP occurs after transplantation of liver,108 kidney,109

heart, kidney-pancreas,110 and bone marrow, and with both
cyclosporin-A and tacrolimus immunosuppression. In a
review of 188 kidney transplants Zarifian et al.111 calculated
that incidence of TMA associated with cyclosporin-A was
14%, and with tacrolimus between 1 and 5%. With
tacrolimus the clinical severity is very variable and drug
levels do not predict development of TMA.112 Dose reduction
or changing one calcineurin antagonist for another113

sometimes results in recovery and suggests a causative role.
These drugs exert both direct and endothelin-1-mediated
vasoconstriction that reduces renal plasma flow and perhaps
lead to prothrombotic changes in endothelium. However, the
pathophysiology is speculative. Plasma activity of
ADAMTS13 has not been measured in this setting.

HUS/TTP can occur up to several months after hemato-
poietic stem cell (bone marrow) transplantation. In a review,
Moake and Byrnes114 point out that conditioning regimes
with total body radiation and cyclophosphamide, and the use
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of cyclosporin for graft-versus-host disease prophylaxis, make
it impossible to determine whether any of these had a
pathogenic role. George JI et al.115 conclude that the
association between bone marrow transplantation and
HUS/TTP is rare and that all in their series had evidence of
underlying sepsis. The pathogenesis has not been convin-
cingly shown. ADAMTS13 activity has been found to be
decreased in patients undergoing allogeneic bone marrow
transplantation but not to the very low levels associated with
TTP, and in some the activity is normal.

It is unclear whether calcineurin inhibitors should be
avoided in transplanting HUS patients from diagnostic
subgroups known to have a high risk of relapse. In one
report cyclosporin-A and tacrolimus were not associated with
HUS recurrence.41 Sirolimus is of doubtful benefit116 as HUS
recurred in two children treated with sirolimus while
avoiding calcineurin inhibitors.117

Pregnancy, HELLP syndrome, and oral contraceptives

TTP is more prevalent in women than in men, and occurs more
often in childbearing years. An association with the use of the
oral contraceptive pill remains speculative, but an association
with pregnancy is clear.118 HUS/TTP may present at any time
during pregnancy but mostly in the last trimester and about the
time of delivery. It is sometimes difficult to distinguish it from
pre-eclampsia. Cases have been described in which TTP recurs
in subsequent, although not always consecutive pregnancies.
Patients with previous HUS/TTP not associated with pregnancy
may or may not relapse when pregnant.

Comprehensive investigation of the cause of pregnancy-
associated HUS/TTP has seldom been undertaken. A modest
reduction in ADAMTS13 activity is induced by estrogens and
occurs normally in the last trimester of pregnancy, but not to
the very low levels observed in TTP.119 However, a few cases
of pregnancy-associated HUS/TTP have severely reduced
protease activity, with or without an inhibitor and the
presence of ultralarge vWF multimers in plasma.120–123

Equally there are cases in which the protease is normal.
There are no reports of complement activation in this group.

HELLP syndrome (HEmolytic anemia, elevated Liver
enzymes, and Low Platelets) is also a disorder of the last
trimester or parturition, and patients may have features of
pre-eclampsia. The blood film typically has evidence of
microangiopathic hemolytic anemia with fragmented red
blood cells. Von Willebrand protease activity is reduced more
than is seen in normal pregnancy, but again not to the low
levels seen in TTP and without ultralarge vWF multimers in
plasma.119 Whether the moderately reduced ADAMTS13
activity plays any role in the pathogenesis is unclear. One
might predict that pregnancy, and pre-eclampsia in parti-
cular, would exacerbate a prothrombotic state and add to the
causation of HUS/TTP, perhaps providing a ‘second hit.’

Systemic lupus erythematosus, antiphospholipid antibody
syndrome

HUS or TTP, systemic lupus erythematosus (SLE) and
antiphospholipid antibody syndrome may coexist in the same

patient. HUS/TTP has been reported in 2–3%124 and 8.4%125

of SLE patients, with over 50 cases to date. It may manifest at
any age, either before or years after SLE has been
diagnosed.126 The etiology is unclear. Autoantibodies to
ADAMTS13, platelets and the platelet glycoprotein CD36
have been described in patients with SLE and it has been
postulated that these incite endothelial injury and trigger the
release of ultralarge vWF multimers, culminating in TMA.124

Immunosuppressive and cytotoxic drugs have been used, in
conjunction with plasmapheresis, to suppress production and
increase clearance of these antibodies, with most patients
achieving remission of microangiopathic symptoms. Some
respond well to plasmapheresis alone.124

HUS/TTP is a rare complication of antiphospholipid
antibody syndrome and sometimes its presenting manifesta-
tion.127 The main clinical consequences are severe hyperten-
sion, variable degrees of proteinuria, renal impairment, and
cortical atrophy. Interestingly, in two patients severe
ADAMTS13 deficiency was found due to autoantibodies.128

Antiphospholipid antibodies have been suggested to increase
the risk of TMA in SLE as lupus anticoagulant or anti-
cardiolipin antibodies are found in the majority of SLE
patients who develop HUS/TTP.127

Glomerular capillary thrombosis is an additional vascular
lesion that occurs in SLE, mainly in patients with anti-
phospholipid antibodies, and leads to glomerular sclerosis
and renal insufficiency.129 Steroids and plasma exchange
alone or in combination, are the most common treatment. A
meta-analysis showed that where steroids alone were the first
treatment used, the clinical status and laboratory abnor-
malities worsened, whereas recovery occurred in 73% of
episodes treated with plasma exchange.127

Glomerular disorders

A small number of cases develop HUS superimposed on
different forms of glomerular diseases. These are often children
who are nephrotic at presentation130–134 although adults are
also described.135 HUS and membranoproliferative glomer-
ulonephritis may coincide. Both are associated with alternative
pathway complement activation and in a few cases where
mutations affecting complement FH have been identified the
classification would be better described as described in the
section on Genetic disorders of complement regulation.

Familial/genetic disorders not included: Part 1

There are current familial cases extensively investigated for
the causes advanced in part 1 of the proposed classification
with negative results, indicating that other inherited risk
factors await recognition.

Unclassified

Presently no cause or clinical association is found in the
majority of childhood patients with non-diarrheal HUS, or in
adults with HUS/TTP. Mostly these cases have not been
comprehensively investigated. However, an undetermined
proportion remains unclassified after full evaluation of
complement regulation and ADAMTS13 activity.
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TESTING THE PROPOSED CLASSIFICATION

Figure 1 shows the diagnoses in 167 children with HUS in the
European Paediatric Registry. Cases with diarrhea or VTEC
infection (95% of all pediatric HUS) are excluded. In
summary, 58 cases could be allocated to a level 1 diagnostic
category, 35% of the total. Few of the 90 cases with no known
causation have had complete investigation for complement
dysregulation or ADAMTS13 activity.

DISCUSSION

Diagnostic terms need precision to be useful. HUS and TTP
describe clinical presentations in the absence of knowledge
about the cause, and even then may confuse. For example,
there is no advantage in relabelling a case of VTEC-induced
‘HUS’ as ‘TTP’ because of neurological events that may affect
over 10% of children. ‘Atypical HUS,’ often used to indicate
presentation without diarrhea, is clearly a misnomer if it
refers to a typical example of a known subgroup, for example
HUS induced by pneumococcal sepsis. ‘Intrinsic’ and
‘extrinsic’ HUS/TTP is a laudable attempt to separate
patients with host factors that promote recurrence and poor
prognosis from those whose disease is the result of a single
environmental insult.136 However, this bipolar concept does
not address any interplay between genetic and environmental
factors. TMA is a pathological term and should be confined
to this context.

Can the term TTP be adapted to indicate etiology and
pathogenesis? Given that severe deficiency of ADAMTS13,
has been identified mostly in those described clinically as
TTP, while normal activity is usually found in VTEC-
induced-, quinine-induced-, and bone marrow transplant-

associated HUS/TTP, this has been proposed. However,
separation of TTP from HUS on the primary role of
ADAMTS13 activity is not without its critics.137 A wide
range of ADAMTS 13 activity can be found in various
physiological and disease states, and a profound reduction
has been shown in sepsis.138 In an unselected series of 111
adult cases, severe ADAMTS13 deficiency provided 89%
sensitivity and 91% specificity for what was clinically
diagnosed as TTP.122 In another unselected series of 142
adults, only 18 cases had profound deficiency, and this
finding did not distinguish them from the 32 with ‘idiopathic
HUS/TTP’ without decreased activity.123 Our proposal allows
etiological and clinical descriptions to operate independently.

Some patients have two different etiologies, for example
both VTEC-induced HUS and loss of ADAMTS13 activity,139

decreased ADAMTS13 plus a FH mutation 140 and a FH
mutation plus cobalamine deficiency.141 For any individual it
may be necessary but not in itself sufficient that there is a
mutation in FH, or a VTEC infection. There are good reasons
to consider ‘two-hit’ or catastrophic models for disease
expression. A mutated complement regulator may be a
predisposition, VTEC infection a trigger. The proposed
classification accommodates this way of thinking about
causation. Dual causation will be missed if clinicians fail to
explore further after a seemingly satisfactory diagnosis has
been reached.

In any case of HUS/TTP, the history and the clinical
pattern is important and may indicate an appropriate
subgroup and therapy. Nevertheless, we propose that there
should be comprehensive investigation of all cases with the
only exception of a first episode of VTEC-positive, diarrhea-
associated HUS in a child in whom there is no family history
of HUS or TTP.

The difficulty in reaching an etiological diagnosis is
considerable. Relevant tests have hitherto been available only
through research laboratories. There is a pressing need for
laboratory services to be available for the assessment of
ADAMTS13 activity, and the genetic and functional inves-
tigation of complement regulation. To assist clinicians the
European Paediatric Research Group for HUS maintains a
website to indicate those laboratories that are able to assist
(http://espn.uwcm.ac.uk/guidelines.htm).

An agreed classification is necessary if disease registries are
to make progress in correlating clinical and etiological
aspects. Without this, advice about treatment often lacks
evidence,142 and treatment trials are difficult to design. We
consider that the present classification will assist with this
process. However, as no etiological diagnosis can be found in
some thoroughly investigated cases, it is likely that additional
diagnostic subgroups are still out there to be discovered. Our
proposal is therefore an interim one destined for further
development.
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