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Summary: Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb)
and a few related mycobacteria, is a devastating disease, killing more
than a million individuals per year worldwide. However, its pathogen-
esis remains largely elusive, as only a small proportion of infected indi-
viduals develop clinical disease either during primary infection or
during reactivation from latency or secondary infection. Subacute,
hematogenous, and extrapulmonary disease tends to be more frequent
in infants, children, and teenagers than in adults. Life-threatening pri-
mary TB of childhood can result from known acquired or inherited
immunodeficiencies, although the vast majority of cases remain unex-
plained. We review here the conditions conferring a predisposition to
childhood clinical diseases caused by mycobacteria, including not only
M.tb but also weakly virulent mycobacteria, such as BCG vaccines and
environmental mycobacteria. Infections with weakly virulent mycobac-
teria are much rarer than TB, but the inherited and acquired immun-
odeficiencies underlying these infections are much better known. Their
study has also provided genetic and immunological insights into child-
hood TB, as illustrated by the discovery of single-gene inborn errors of
IFN-c immunity underlying severe cases of TB. Novel findings are
expected from ongoing and future human genetic studies of childhood
TB in countries that combine a high proportion of consanguineous
marriages, a high incidence of TB, and an excellent clinical care, such
as Iran, Morocco, and Turkey.

Keywords: primary immunodeficiency, human genetics, IFN-c, children, Mendelian
susceptibility to mycobacterial diseases (MSMD)
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Introduction

Tuberculosis: an ancient, deadly disease.

Mycobacterium tuberculosis (M.tb) is the bacterium responsible for

most cases of human tuberculosis (TB). Other rare causes

include M. bovis, M. africanum and M. canettii (1, 2). M.tb has

been causing death and disease in human populations since

the Classical era (3). In 1882, Robert Koch discovered a

staining technique that made it possible to identify M.tb

(Fig. 1) (4). Bacilli are transmitted by the inhalation of aero-

solized droplets generated by the coughing of a patient with

active TB. This disease remains a major public health prob-

lem. One-third of the world population is thought to be

infected with M.tb, with about 8.6 million new cases and

1.3 million deaths worldwide in 2012 (5). About 6–10% of

these new cases are children, and children account for up to

40% of all new TB cases in the countries with the highest

incidence of TB (5, 6). BCG vaccination provides some pro-

tection against severe disseminated TB in childhood, but this

protection is incomplete (6). The development of antibiotics

has greatly decreased childhood mortality due to TB, but

more than 80 000 children still die from TB each year (7).

The advent of multidrug-resistant TB, fueled by the HIV epi-

demic, has made it necessary to develop new therapeutic

strategies (8). However, only a small fraction of the individ-

uals exposed to M.tb develop clinical TB. This is particularly

true for children, and the reasons for this remain unclear.

Major research efforts are therefore being needed on eluci-

dating the pathogenesis of childhood TB.

Immunological Reviews 2015

Vol. 264: 103–120
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Fig. 1. Ziehl–Neelsen staining of acid-fast mycobacteria in a
mesenteric lymph node biopsy. Magnification 9630.
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Childhood tuberculosis

A substantial proportion of subjects do not become

infected despite sustained high levels of exposure to M.tb

(9). About 5% of infected individuals develop clinical TB

within 2 years of infection, either without latency or after

a very short latent phase (10, 11). This ‘primary’ TB is

particularly common in children, running a subacute

course and often associated with extrapulmonary disease

due to dissemination of the bacillus in the bloodstream

(12, 13). However, most infected individuals develop

latent TB infection with an absence of overt clinical signs;

approximately 90–95% of these individuals never develop

clinical disease (10, 14, 15). The remaining 5–10%

develop chronic pulmonary TB later in life, typically due

to reactivation from latency. Severe primary TB was, by

far, the most frequent form in children in endemic areas

before BCG and antibiotics became available, resulting in

high rates of mortality in children under the age of

2 years (3, 16, 17). The risk of severe primary TB is still

dependent on age at primary infection, decreasing from

10% to 20% for children under the age of 1 year to less

than 0.5% for children over the age of 5 years (12, 13).

These severe forms are mostly either miliary (Fig. 2) or

affect the central nervous system (causing meningitis, in

particular), and they remain life-threatening (12, 13).

One of the key unanswered questions in the field of

childhood TB concerns the nature of predisposition to the

development of severe clinical forms in only a minority

of infected children. HIV infection predisposes subjects to

severe forms of childhood TB, but such infection is

observed in only a small fraction of TB affected children

(18). The last decade has provided a new clue to help us

solve this riddle, by showing that at least some cases of

severe TB, in HIV-seronegative children, can be explained

by single-gene inborn errors of immunity (19, 20).

The human genetic theory of tuberculosis

The variability in the reaction of children to primary infection

with M.tb was dramatically illustrated by the L€ubeck accident

in 1929 and 1930: 251 children were vaccinated with a strain

of BCG contaminated with M.tb. ‘Only’ 72 babies died within

the year from TB, 135 got TB but spontaneously recovered,

and 44 managed to fend off infection, for at least 12 years

(3). Epidemiological surveys and familial aggregation studies

have provided strong evidence that this considerable interin-

dividual variability in the development of both childhood and

adult TB can be accounted for, at least in part, by host genetic

factors (3, 9, 21, 22). In parallel, a long series of experimen-

tal studies in various animals, beginning in the 1930s, also

established the importance of host genetic background for

determining the outcome of primary infection with M.tb

(reviewed in 14, 15, 22–29). However, without an appropri-

ate laboratory animal model for the disease, it has been a long

and difficult struggle to unravel the genetic basis of TB resis-

tance/susceptibility. The human genetic components of pul-

monary TB in adults and of M.tb infection per se have been

reviewed elsewhere (9, 16, 30–35). This review focuses on

childhood TB. Evidence is emerging that severe TB in children

may result from inborn errors of immunity (16, 31). The first

evidence to support this view came from the identification of

acquired immunodeficiencies and primary immunodeficien-

cies (PIDs), both of which are associated with a broader infec-

tious phenotype, including mycobacterial diseases (Table 1).

Subsequent progress came mostly from the study of clinical

diseases caused by weakly virulent mycobacteria, such as BCG

vaccines and non-tuberculous mycobacteria (NTM), in other-

wise healthy individuals. This condition, Mendelian suscepti-

bility to mycobacterial disease (MSMD) (OMIM209950),

underlies a much narrower range of infections, and its study

led to the identification of the first cases of Mendelian predis-

position to TB.

A B

Fig. 2. Infiltration of both lungs by multiple micronodules shown in chest X-ray (A) and thoracic computed tomography (B) in a 3-years-old
child with miliary TB.
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Acquired immunodeficiencies conferring a

predisposition to mycobacterial diseases in childhood

Immunosuppressive treatments for a number of severe child-

hood conditions increase the risk of mycobacterial diseases.

In particular, childhood leukemia is associated with a higher

risk of developing BCG (36), and NTM infections (37–40)

or TB (41–44) during chemotherapy or following bone mar-

row transplantation (BMT). NTM, M.tb and, more rarely,

BCG infections have also been observed in children treated

with immunosuppressive drugs for solid organ transplanta-

tion (45–47) or BMT (48–52) for other conditions, such as

severe aplastic anemia, myeloma, familial hemophagocytic

lymphohistiocytosis or malignant infantile osteopetrosis.

However, worldwide, TB is the most common infection

affecting patients seropositive for human immunodeficiency

virus (HIV), and it remains the most common cause of death

in patients with acquired immunodeficiency syndrome

(AIDS) (53). Overall, 1.1 million of the 9 million individu-

als infected annually with M.tb are also infected with HIV.

Data for children are scarce, with estimates varying widely as

a function of the location of the study. The percentage of

children infected with HIV and treated for TB ranges from

2% in the USA to 26% in South Africa (18). BCG vaccination

is contra-indicated in HIV-infected individuals, and it has

been suggested that vaccination should be delayed (to

8 weeks of age rather than at birth), to make it possible to

identify HIV-positive children before vaccination takes place

(54). NTM infections have also been reported in HIV-posi-

tive children (55–57). By causing a progressive decline in

CD4 T-cell immunity, HIV infection strongly influences the

pathogenesis of TB, resulting in a higher risk of clinical TB,

with more frequent extrapulmonary involvement, atypical

radiographic signs and paucibacillary disease, potentially hin-

dering timely diagnosis. Globally, TB kills one-third of the

patients co-infected with HIV (7), and this deadly association

between TB and HIV infection provides strong support for

the hypothesis that CD4 T cells play a critical role in anti-TB

immunity.

Inherited conditions affecting the lungs and conferring

a predisposition to mycobacterial disease

Congenital lung disorders observed in the first few years of

life, such as primary ciliary dyskinesia or pulmonary alveolar

proteinosis (PAP), lead to airway clearance defects. In partic-

ular, PAP is associated with defects of pulmonary surfactant

homoeostasis and alveolar macrophages. These defects result

in impaired lung function and are probably responsible for

secondary infections with mycobacteria, including M.tb in

particular, which have only ever been reported in adults

(58–60). Cystic fibrosis (CF) is another heritable condition

Table 1. Acquired and inherited conditions with mycobacterial susceptibility to BCG, NTM, or Mycobacterium tuberculosis

NTM BCG TB TB only* Other infections† Physiopathology

Acquired ID
Immunosuppressive treatment/BMT + ? + No Yes Impairment of immune cells
HIV + + + No Yes T-cell defect
Anti-IFN-c antibodies + � + No Yes Impaired IFN-c response
Anti-TNF-a antibodies +/� � + Yes Yes Impaired TNF-a response

Inherited ID
Cystic fibrosis + � + No Yes Alteration of the lungs

PID
SCID � + + No Yes T-cell defect
AD GATA2 deficiency + � + No Yes Quantitative defect of monocytes, DC, and PAP
CGD +/� + + No Yes Respiratory burst defect in all phagocytic cells
EDA-ID + + + No Yes Impaired CD40-dependent IL-12 production
XR CD40L deficiency + + + No Yes Impaired CD40-dependent IL-12 production
AR STAT1 deficiency + + � No Yes Impaired IFN-c response
AR IRF8 deficiency � + � No Yes Absence of monocytes and DC
AR TYK2 deficiency � + + Yes Yes Impaired IFN-c production

MSMD
IFN-cR deficiencies + + + Yes No Impaired IFN-c response
AD STAT1 deficiency + + + Yes No Impaired IFN-c response
XR gp91phox deficiency � + + Yes No Respiratory burst defect in macrophages
AD IRF8 deficiency � + � No No Absence of CD11C+ CD1c+ DC
XR NEMO deficiency + + + No No Impaired CD40-dependent IL-12 production
IL-12 and IL-12R deficiencies + + + Yes Yes Impaired IFN-c production
AR ISG15 deficiency � + � No No Impaired IFN-c production

*Patients with only TB are also noted.
†The clinical phenotype of the patients may (yes) or may not or only rarely (no) include other infectious diseases. MSMD patients are typically vul-
nerable to other intra-macrophagic pathogens, such as Salmonella (182).

© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
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leading to airway clearance defects (61). CF is caused by

mutations in the cystic fibrosis transmembrane regulator

(CFTR) gene, resulting in thick mucus secretions and a fail-

ure to clear these secretions. Patients suffer from chronic

respiratory infections caused by common bacteria (e.g. Staph-

ylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia and Hae-

mophilus influenzae), filamentous fungi and/or yeasts. NTM

infections are increasingly being reported in adults with CF

(62–64), but children are also vulnerable (65, 66). The fre-

quency of NTM infections in CF children from the UK has

been estimated at 3.3% (67). BCG infection has never been

reported in these patients, even in countries with mandatory

BCG vaccination policies and a relatively high prevalence of

CF, such as France. Infections with M.tb have been reported,

mostly in adults (68, 69) but also, more rarely, in children

(70, 71). Overall, changes in the integrity of the lung may

increase susceptibility to mycobacterial infections, including

TB. The fine molecular and cellular basis of mycobacterial

disease in the context of CF remains unclear.

Primary immunodeficiencies with T-cell deficiency

Most PIDs are associated with broad susceptibility to patho-

gens, but a few are associated with a narrower susceptibility

to mycobacterial disease (72). These PIDs, include, in particu-

lar, those involving T-cell deficiency. Severe combined immu-

nodeficiency diseases (SCID) are a group of genetic

conditions characterized by very low levels of autologous T

lymphocytes, with or without an associated lack of B cells

(B� or B+) (72). Six and eight morbid genes have been iden-

tified for T�B� and T�B+ SCID, respectively (72). Affected

patients are extremely vulnerable to various infectious dis-

eases (viral, bacterial, fungal, or parasitic) in the first few

months of life. They are also susceptible to infections with

mycobacterial species, particularly BCG, which is typically

administered as a vaccine in the first few months of life (73,

74). Most patients present disseminated BCG infection,

described as BCG-osis, but local infections (BCG-itis) have

also been described (73, 75). Three patients with SCID and

TB have been reported (76, 77), and three others with NTM

infections have been described [two with M. avium (78) and

the other with M. marinum (79)]. However, these patients

would probably be highly susceptible to NTM and M.tb, if

exposed. Hypomorphic mutations of SCID genes underlie a

less severe clinical and immunological phenotype, known as

combined immunodeficiency (CID), in which NTM infec-

tions have been reported (80). CID may also be caused by a

number of other genetic defects (72), some of which are

associated with mycobacterial diseases in a small proportion

of patients, implying a more modest susceptibility to myco-

bacterial infection. Two patients with ZAP70 deficiency were

found to display BCG-itis (81). One patient with major histo-

compatibility complex class II deficiency had M. avium com-

plex infection (82), and one patient had BCG-osis (73). Two

patients with purine nucleoside deficiency (PNP) developed

BCG-osis (83, 84). One patient with Schimke immune-osse-

ous dysplasia (SMARCAL1 deficiency) had NTM infection

(85). Finally, five patients with Nijmegen breakage syndrome

(NBS) and TB have been described (86–88). The T-cell

defects in SCID and CID patients are probably responsible for

their susceptibility to mycobacteria, which appears to be cor-

related with the severity of the T-cell defect. This observation

further highlights the role of human T cells in anti-mycobac-

terial immunity.

Autosomal dominant GATA2 deficiency

GATA2 encodes a transcription factor involved in the homeo-

stasis of hematopoietic stem cells. Heterozygous mutations of

GATA2 have been identified as the cause of eight diseases:

monocytopenia and mycobacterial infection syndrome (89,

90); dendritic cell, monocyte, B, and natural killer (NK) lym-

phoid deficiency (91, 92); familial myelodysplastic syn-

dromes (MDS)/acute myeloid leukemia (AML) (93);

Emberger syndrome (primary lymphedema with MDS) (94,

95); pediatric neutropenia (96), aplastic anemia (97); hypo-

gammaglobulinemia with impaired antibody response (98);

and the original case report of human NK cell deficiency (99,

100). GATA2 mutations are loss-of-function (LOF) and seem

to act by haploinsufficiency (101). The clinical hallmarks of

GATA2 deficiency include immunodeficiency with marked

susceptibility to human papillomaviruses (HPVs) and myco-

bacteria (non-tuberculous and tuberculous) (102), predispo-

sition to MDS/AML, PAP, and congenital lymphedema (103).

Patients have normal numbers of T cells, but very few circu-

lating monocytes; they also display B and NK lymphocytope-

nia and have no detectable peripheral blood myeloid or

plasmacytoid dendritic cells (DCs). There is variability in the

timing of the onset of clinical signs: the proportion of patients

without symptoms is 50% at the age of 20 years, 25% at

30 years, and 16% at 40 years (102). However, one quarter

of the patients display environmental mycobacterial infections

during childhood. One young adult also suffered from TB

(102). To our knowledge, no patient with GATA2 deficiency

and isolated mycobacterial disease has ever been reported.

The identification of such patients might improve our

© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
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understanding of mycobacterial susceptibility in GATA2-defi-

cient patients, although it has already been suggested that this

susceptibility may be due to a lack of DC (see also IRF8 defi-

ciency).

Chronic granulomatous disease (CGD)

CGD is a life-threatening PID affecting phagocytes. It is caused

by a mutation of any of the genes encoding one of the com-

ponents of the nicotinamide adenine dinucleotide phospha-

tase (NADPH) oxidase complex, which is active particularly

in the phagocytes, including granulocytes, monocytes and

macrophages (104–106). Mutations may affect CYBB (located

on the X chromosome) encoding gp91phox (in 70% of

cases), CYBA encoding p22phox (5%), NCF1 encoding

p47phox (20%), NCF2 encoding p67phox (5%), and NCF4

encoding p40phox, this last defect having been found in only

one patient to date (107). These mutations result in an inabil-

ity to produce NADPH-oxidase-dependent reactive oxygen

species, which are required for the phagocytic killing of

microorganisms. Interestingly, some specific CYBB mutations

have been shown to confer a selective predisposition to tuber-

culous mycobacteria, but not CGD (see paragraph below).

Overall, CGD patients are highly susceptible to pyogenic bac-

terial and fungal infections, caused by Staphylococcus aureus and

Aspergillus fumigatus in particular, but also to mycobacterial

infections. One recent study of 71 CGD patients focused on

mycobacterial infections: 53 patients (75%) presented adverse

effects of BCG vaccination (mostly BCG-itis) and 31 (44%)

had TB (including 13 who also had BCG infection); none of

the patients had NTM disease (F. Conti, JL. Casanova, J. Busta-

mante, unpublished data). Worldwide, 296 CGD patients

with mycobacterial infections had been reported by 2013

(F. Conti, JL. Casanova, J. Bustamante, unpublished data) and

the CGD database (http://www.uta.fi/imt/bioinfo/CYBB-

base/ for patients with CYBB deficiency) recorded 1150 CGD

patients with known genetic defects in 2010 (108, 109). The

proportion of CGD patients with mycobacterial infections

therefore may be up to 25% (104, 108–111). Only four

patients with NTM infections have been reported (112–115)

which appeared to be extremely rare in CGD patients as com-

pared to TB and BCG infections. Overall, mycobacterial dis-

eases are relatively common in patients with CGD living in

countries in which TB is endemic and BCG vaccination is

mandatory. This suggests that phagocytes and the NADPH-

oxidase complex are crucial for human immunity to tubercu-

lous mycobacteria.

Anhidrotic ectodermal dysplasia with

immunodeficiency (EDA-ID)

X-linked EDA-ID (116–118) is caused by hypomorphic muta-

tions in the gene encoding NF-jB essential modulator

(NEMO), a protein essential for activation of the ubiquitous

transcription factor NF-jB. Clinically, the syndrome involves

hypohidrosis, widely spaced cone- or peg-shaped teeth, and

hypotrichosis (119, 120). These features result from defective

signaling via the ectodysplasin receptor (EDA-R) signaling

pathway. No consistent T- or B-cell abnormality has been

identified in addition to the impaired antibody response to

Fig. 3. Schematic diagram of the cooperation between phagocytes/dendritic cells and T lymphocytes/NK cells during mycobacterial infection.
Molecules in blue are mutated in patients with a broad infectious phenotype including mycobacterial diseases. Molecules in red are mutated in
patients with isolated mycobacterial diseases (for IRF8 and STAT1, the AD forms by LOF only). Molecules in blue with red dots indicate that
specific mutations in the corresponding genes are responsible for isolated mycobacterial diseases. As described in the review, patients with
acquired or inherited profound T-cell deficiency are also susceptible to mycobacterial infections.
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polysaccharides in all cases, and high serum levels of IgM, and

low serum levels of IgG, IgA, or IgG2 in several cases. The

broad and profound immunological phenotypes of patients

with NEMO deficiencies are responsible for the broad suscep-

tibility of these patients to infections with invasive pyogenic

bacteria, NTM, and, to a lesser extent, parasites, viruses, and

fungi (120). The first patient with EDA-ID described died of

miliary TB at the age of 20 months (121). Up to 100 male

patients with hypomorphic mutations of NEMO have been

reported, and mycobacterial infections were found in about

40% of them (117, 122–128). Some missense mutations con-

fer a predisposition to mycobacterial disease only, with no

signs of EDA (see paragraph below). An autosomal dominant

(AD) form of EDA-ID was also reported in eight patients

(129–136). This form is caused by a hypermorphic heterozy-

gous mutation of NFKBIA/IKBA, impairing the degradation of

IjBa and resulting in the partial retention of NF-jB dimers in

the cytoplasm (129). IjBa deficiency results in a severe

impairment of TCR signaling (129). One patients displayed

mycobacterial diseases (134). Homozygous LOF mutations in

IKBKB, encoding IKK2, a component of the IKK complex, have

also been reported (137–139). Patients display hypogamma-

globulinemia, an excess of na€ıve T and B cells and they suffer

from bacterial, viral, and fungal infections with (137) or

without (138, 139) the clinical signs of EDA. Interestingly,

five of the nine patients described had mycobacterial disease,

including one patient with TB (138). Not all patients with

EDA-ID present mycobacterial disease, but NEMO-IKK2-IjBa-

dependent NF-jB activation nevertheless appears to be essen-

tial for human anti-mycobacterial immunity.

X-linked recessive CD40L deficiency

CD40 ligand (CD40L) deficiency is a rare genetic disorder of T

cells, leading to X-linked hyper IgM syndrome (X-HIGM).

CD40L is normally expressed on activated T cells, and, follow-

ing binding to CD40, it is expressed on macrophages, DCs,

and B cells [antigen-presenting cells (APCs)]. It signals partly

through NEMO-NF-jB, to induce IL-12 production (140,

141). Mutations of the gene encoding CD40L result in

impaired T/APC interaction, leading to a failure of B-cell

immunoglobulin isotype switching and impaired macrophage

activation. Patients with X-HIGM display recurrent bacterial

infections in association with markedly low serum IgG, IgA,

and IgE levels, but normal to high serum IgM levels (142). In

addition to bacterial infections associated with an impaired

antibody response, a prominent clinical feature of patients

with X-HIGM is a high frequency of opportunistic infections

with Pneumocystis jirovecii and Cryptosporidium parvum. X-HIGM

patients have also been reported to suffer from localized and

disseminated BCG disease (87, 143, 144), NTM disease (145),

and, more frequently, TB (87, 144–148). Given that most

patients with X-HIGM have been exposed to NTM for long

periods and most were vaccinated with BCG, X-HIGM seems to

result in a moderate impairment of anti-mycobacterial immu-

nity. Nevertheless, severe TB appears to be a serious threat in

patients living in areas endemic for TB, probably due to

impaired CD40-dependent IL-12 production during infection.

Autosomal recessive STAT1 deficiency

Signal transducer and activator of transcription 1 (STAT1) is

a component of the JAK/STAT signaling pathways involved

in the responses to various cytokines and growth factor

stimuli. In both mice and humans, STAT1 has been impli-

cated in the response to IFNs (IFN-a/b, IFN-k, and IFN-c)

and IL-27. Autosomal recessive (AR) complete and partial

STAT1 deficiencies were first described in 2003 (149) and

2009 (150), respectively. Patients with complete STAT1

deficiency display a clinical phenotype of severe and life-

threatening mycobacterial and viral disease. Partial STAT1

deficiency is associated with milder disease (149–156). The

corresponding mutant alleles were shown to be amorphic

and hypomorphic, respectively. The mycobacterial species

identified were BCG, M. kansasii, M. avium, and M. szulgai. Cells

from patients with complete and partial STAT1 deficiencies

display an abolished or impaired response to the STAT1-

dependent cytokines, IFN-c, IFN-a, IL-29, and IL-27 (149,

151, 152). The susceptibility to viral infections may be

explained by an impaired STAT1-dependent response to

IFN-a/b. By contrast, abolished or impaired IFN-c signaling

probably accounts for the mycobacterial infections of the

patients (19). However, a role for IL-27 cannot be excluded

(157). None of these patients has been reported to suffer

from TB, probably due to a lack of exposure. An AD form

of STAT1 deficiency has been described, in which patients

present only mycobacterial disease. This form will be

described below.

Autosomal recessive IRF8 deficiency

Interferon regulatory factor 8 (IRF8) is a transcription factor

involved in the development of myeloid subsets. AR com-

plete IRF8 deficiency was described in a single patient in

2011 (158). This patient carries a homozygous missense

mutation of IRF8 (K108E) and presents a phenotype very

similar to that of Bxh2 mice carrying a hypomorphic
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mutation of IRF8 (159). The patient suffered from BCG-osis

and oral candidiasis. He has normal levels of B cells and NK

cells, but abnormal white blood cell counts, with an absence

of monocytes and an excessive number of neutrophils. An

analysis of peripheral blood mononuclear cells (PBMCs) by

flow cytometry revealed a severe depletion of the non-lym-

phoid HLA-DR+ compartment, with a total absence of both

CD14+ and CD16+ monocytes in particular. In addition, no

DC were detectable in the blood. The cells absent included

both CD11c myeloid (CD1c+ and CD141+) and plasmacy-

toid (CD123+) cells. In addition, a bone marrow biopsy

showed myeloid hyperplasia (158). A recent study dedicated

to the functional characterization of this allele showed that

the mutation caused a loss of nuclear localization and a loss

of transcriptional activity, accompanied by a decrease in

protein stability, and increases in ubiquitination, sumoyla-

tion, and proteosomal degradation (160). The patient had

normal numbers of T cells (CD4+ and CD8+), but they

appeared to be anergic, probably due to the absence of

myeloid APC. Whole blood cells failed to produce IL-12 in

response to BCG, phytohemagglutinin (PHA), and lipop-

olysaccaride (LPS), and levels of IFN-c production were very

low (as were TNF-a, IL-10, and IL-6 levels). AR complete

IRF8 deficiency is a life-threatening disorder combining fun-

gal and mycobacterial infections, myeloproliferation and an

absence of monocytes and dendritic cells. An AD form of

IRF8 deficiency associated exclusively with mycobacterial

diseases will be discussed below.

Autosomal recessive TYK2 deficiency

TYK2 is a Janus kinase (JAK). The JAKs bind to the intracel-

lular part of some receptors and become activated following

ligand binding and changes in the conformation of the

receptors. They autophosphorylate and trans-phosphorylate

each other on tyrosine residues, and they also phosphorylate

the intracellular part of the receptor and the STATs recruited

to the docking site. TYK2 is involved in various signaling

pathways, including the responses to IL-12, IFN-a/b, IL-10,

and IL-6 (161). TYK2 deficiency was first described in a sin-

gle patient in 2006 (161). This patient comes from Japan

and was diagnosed with hyper IgE syndrome (HIES) in con-

junction with disseminated mycobacterial and viral diseases.

The patient displays a homozygous deletion of four base

pairs at the beginning of TYK2, resulting in a premature stop

codon terminating the protein early in its translation (posi-

tion 90 of the 1187 amino acids of the WT TYK2). Another

patient from Turkey was subsequently diagnosed with TYK2

deficiency. Surprisingly, he displayed mycobacterial, Brucella,

and viral infections, but no signs of HIES (162). He is

homozygous for a nine-base pair deletion, introducing to a

premature stop codon at position 767. Both patients have

no WT TYK2 protein. Three other patients with complete

TYK2 deficiency have since been identified with a sole clini-

cal phenotype of BCG-osis, severe abdominal TB, and mili-

ary TB, respectively (Kreins et al., manuscript submitted).

More patients with inherited TYK2 deficiency are required

for the collective ascertainment and precise definition of the

core clinical phenotype of this disorder. TYK2 is involved in

the IL-12 signaling pathway, and abolition of the response

to IL-12 was reported in the first TYK2-deficient patient

(161). An impaired response to IL-12 has been shown to

confer high levels of susceptibility to mycobacteria in MSMD

patients with mutations of IL12B and IL12RB1 (see below)

(163–166). It therefore seems likely that the susceptibility

of TYK2-deficient patients to mycobacteria results from

impaired IL-12 signaling, leading to defective IFN-c produc-

tion.

Mendelian susceptibility to mycobacterial diseases

(MSMD)

In addition to these various PIDs, studies in the early

1990s identified a new PID consisting exclusively of sus-

ceptibility to mycobacterial diseases due to weakly virulent

mycobacterial species, either NTM or the BCG vaccine, in

otherwise healthy children; this condition was named

MSMD (19). Since the identification of the first morbid

gene (167, 168), a total of nine genes (IFNGR1, IFNGR2,

STAT1, IRF8, CYBB, IL12B, IL12RB1, NEMO, and ISG15) (158,

167–181) have been implicated in this condition (Fig. 3),

and 18 different genetic etiologies based on the mode of

inheritance, the expression of the mutant allele and the

function abolished, have been characterized as responsible

for MSMD (182). The MSMD genes are described below,

and it is interesting to note that defects in some of these

genes (described above) lead to a broader phenotype, due

to a different mode of inheritance (STAT1, IRF8) or differ-

ent mutations (NEMO, CYBB). All the mutated MSMD genes

are involved in the IFN-c signaling pathway, highlighting

the crucial role of this molecule in anti-mycobacterial

immunity (Fig. 3). The corresponding genetic defects lead

to an impairment of either the response to or the produc-

tion of IFN-c [first identified as macrophage-activating fac-

tor (183)], and some have also been shown to be

responsible for childhood TB.
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IFN-cR deficiencies

IFN-cR1 and IFN-cR2 are the ligand-binding and transducing

receptor chains of the IFN-c receptor, respectively. AR and

AD, complete and partial deficiencies, with or without

expression of the molecule at the cell surface, of both

IFN-cR1 and IFN-cR2 have been described (167–173, 184–

186). Complete IFN-cR deficiency is associated with

abolished gamma-activating factor (GAF) activation and is

clinically very severe, often leading to the death of the

patients in the absence of hematopoietic stem cell transplan-

tation, whereas partial deficiency, resulting in some detect-

able GAF activation, has a more favorable outcome (187,

188). Patients suffered from diseases caused by BCG and

NTM. Other rare pathogens have also been described, but

each only in a very small number of patients (182). Patients

are also susceptible to M.tb. Indeed, during the investigation

of MSMD, several siblings of MSMD patients carrying the

same genetic defect as the index case were found to display

severe TB. Two patients with complete IFN-cR1 deficiency

had TB in addition to M. avium and M. fortuitum infections in

one (189) and to M. fortuitum infection in the other (171,

188). Two patients with partial dominant IFN-cR1 deficiency

had TB only (due to M. bovis) (190) and TB associated with

M. avium infection (188). Finally a child with partial recessive

IFN-cR1 deficiency was found to suffer from TB only (170).

Two other cases (siblings of probands with partial recessive

IFN-cR1 deficiency) were found to have TB, but the muta-

tions could not be demonstrated genetically, due to a lack of

material (169, 191). This highlights the crucial role of the

IFN-c response in anti-mycobacterial immunity in general

and in anti-TB immunity in particular.

Autosomal dominant STAT1 deficiency

Patients with mycobacterial diseases only have been shown to

carry heterozygous mutations of STAT1. Since 2001, 12

patients with AD LOF STAT1 mutations have been reported

(175, 192–195). These patients have suffered from BCG-osis

(n = 6), M. avium (n = 3), and M.tb (n = 1) infections, and

mycobacterial disease due to an unspecified mycobacterium

in two patients. Two grandparents of two patients had had

TB, but the genetic diagnosis could not be confirmed (192).

The patients were successfully treated, and no death due to

mycobacteria was observed. Clinical penetrance is incom-

plete, because five individuals known to be genetically

affected have not developed the disease. The mutations are

heterozygous missense mutations affecting phosphorylation

or DNA-binding, or both. In vitro studies on STAT1-deficient

cells showed that the mutations were LOF (amorphic or

hypomorphic) for GAF and interferon-stimulated gene factor

3 (ISGF3) in response to IFN-c and IFN-a, respectively (175,

192). However, heterozygous cells from patients display a

defect only for GAF activation upon IFN-c (and IFN-a) stimu-

lation, with no detectable defect for ISGF3 activation in

response to IFN-a stimulation. These STAT1 mutations are,

therefore, recessive for ISGF3 activation in response to IFN-a

and dominant negative for GAF activation in response to IFN-

c (and IFN-a) stimulation (175). Similarly, ISGF3-dependent

responses to IL-29 are normal in patients, whereas GAF-

dependent responses to IL-27 are impaired (192). Conse-

quently, patients are normally resistant to viral infections due

to normal ISGF3 activation after IFN-a signaling (and IL-29

signaling) and susceptible to mycobacterial disease due to

impaired IFN-c signaling (and perhaps IL-27 signaling). This

experiment of nature highlights the role of the STAT1-depen-

dent IFN-c response in anti-mycobacterial immunity, includ-

ing M.tb.

X-linked recessive gp91phox deficiency

Seven male patients with X-linked CYBB deficiency from two

unrelated families developed infections due to tuberculous

mycobacteria only, without the other signs previously

described for CGD. They were shown to carry specific hemi-

zygous missense mutations of CYBB, encoding gp91phox

(Q231P and T178P). Six had BCG infections and the seventh,

who was not vaccinated with BCG, developed a disseminated

form of bona fide TB. An obligate carrier developed tuberculous

salpingitis (105, 176). These particular mutations were

shown to abolish the respiratory burst function in monocyte-

derived macrophages (MDMs), when these cells were acti-

vated with BCG, PPD (purified protein derived from M.tb), or

IFN-c. By contrast to what had been observed for CGD

patients, neutrophils, monocytes, and monocyte-derived den-

dritic cells (MDDCs) from these patients had a normal respira-

tory burst, as estimated by measurements of superoxide and

hydrogen peroxide production (176, 196). Interestingly, the

impaired function of NADPH in MDM was found to be corre-

lated with the impaired expression of gp91phox in these cells

(176). This provides a good illustration of the power of

human genetics to dissect the role of molecules in different

tissues. It also suggested that CGD patients suffered from

mycobacterial diseases due to impairment of the respiratory

burst specifically in macrophages, highlighting the critical

role of these cells and this pathway in anti-mycobacterial

immunity (111). Overall, these studies demonstrate that the
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respiratory burst in macrophages is essential to contain infec-

tions due to BCG and M.tb, but, surprisingly, not those caused

by NTM.

Autosomal dominant IRF8 deficiency

Two patients from two independent families with MSMD as

their sole clinical phenotype were identified as carrying a het-

erozygous (T80A) IRF8 mutation (158). Both patients suf-

fered from recurrent episodes of mycobacterial disease caused

by BCG. The T80A allele is expressed at normal levels in the

cells of the patients, and was shown to be hypomorphic for

the induction of IRF8-dependent target genes (such as NOS2

and IL12B). The mutation appears to affect the DNA-binding

ability of IRF8 and was shown to be dominant negative in

mouse macrophages. Immunophenotyping of PBMCs from

the patients showed that there was no deficiency of circulating

lymphocytes and granulocytes, monocyte subgroups or

CD123+ plasmacytoid DCs. However, within the CD11c+ sub-

group of DCs, which are normally divided into minor

CD141+ and major CD1c+ subgroups, there was a marked loss

of CD1c+ DCs, whereas the total number of CD11c+ and

CD141+ cells was normal. The CD1c+ DCs produce huge

amounts of IL-12 when stimulated by the TLR7/8 ligand

(R848). However, the level of IL-12 production mediated by

the mutant T80A protein is only one-third that for the wild-

type. In addition, the defect in IL-12 production is not gen-

eral, as no defect was observed in whole blood assays or in

EBV-immortalized B cells stimulated with phorbol 12,13-dib-

utyrate (PDBu). Once again, AD IRF8 deficiency highlights

that the specific loss of CD11c+ CD1c+ cells results in predis-

position to mycobacterial disease. However, the precise role

of these cells in susceptibility to mycobacteria remains

unclear, although it seems likely that the loss of these cells

may lead to an impaired response to IFN-c and impaired IL-

12 production.

X-linked recessive NEMO deficiency

Seven male patients with two specific NEMO mutations

(E315A and R319Q) have been identified (180). These

patients suffered from mycobacterial diseases (BCG and

NTM); one patient had proven TB, and another had proba-

ble TB. No other severe infections have been reported in

these patients, with the exception of invasive Haemophilus in-

fluenzae type b infection in one patient. Only one of the

patients has conical decidual incisors. The PBMCs of the

patients displayed low levels of IFN-c and IL-12 production,

after stimulation by PHA or CD3-specific antibodies (180,

197–200). Co-culture experiments showed that monocytes

from some of these patients had selective, intrinsic defects

of T cell-dependent IL-12 production, resulting in impaired

IFN-c production (180). Unlike other known NEMO muta-

tions, these two specific mutations selectively impair the T

cell-dependent, CD40-mediated activation of c-Rel, which

leads to the production of IL-12 (180). In addition, pull-

down assays have revealed a milder defect in ubiquitin

binding than for the mutations associated with EDA-ID

(127, 201). Thus, these hypomorphic recessive mutations

of NEMO selectively impair the T-cell-dependent, CD40-

dependent, c-Rel-mediated NF-jB pathway of IL-12 activa-

tion in myeloid cells. This alternative pathway of IL-12 pro-

duction is therefore essential for human immunity against

BCG and M.tb. The prognosis of the patients is variable, and

they might benefit from treatment with antibiotics and IFN-

c (197, 202). This again highlights the power of human

genetics to decipher the individual roles of molecules and

pathways in natura.

Autosomal recessive ISG15 deficiency

A recent report has highlighted the role of a potent inducer of

IFN-c, interferon-stimulated gene 15 (ISG15) (181). ISG15

encodes a ubiquitin-like protein that is attached to substrates in

a process called ISGylation, which closely resembles

ubiquitination (203). ISG15 is present in neutrophils and mye-

loid cells and can be released upon bacterial challenge, inducing

IFN-c secretion in synergy with IL-12 (203). AR complete

ISG15 deficiency has been found in patients with MSMD suffer-

ing from BCG disease. The alleles are loss-of-expression and

LOF, and the cells of the patients display an impairment of IFN-

c production in response to stimulation with BCG and IL-12, as

in IL-12Rb1-deficient patients (see the next paragraph). This

defect can be rescued by the addition of free extracellular

recombinant human ISG15, clearly demonstrating the critical

role of extracellular ISG15 in IFN-c induction. Another intrigu-

ing clinical phenotype, intracranial calcifications, was subse-

quently observed in these patients and in three others (204).

Enhanced IFN-a/b immunity due to the absence of intracellular

ISG15, preventing the stabilization of USP18, a critical negative

regulator of IFN-a/b, is observed in all ISG15-deficient patients,

reminiscent of the Mendelian autoinflammatory interferonopa-

thies Aicardi-Gouti�eres syndrome and spondyloenchondrodys-

plasia, which are also associated with intracranial calcifications

(204). IFN-c induction and secretion by T and NK cells, stimu-

lated by IL-12 and ISG15, is thus required for efficient anti-

mycobacterial immunity.
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Autosomal recessive IL-12p40 and IL-12Rb1
deficiencies

IL-12 consisting of two subunits, IL-12p40 (also common to

IL-23) and IL-12p35, is secreted by myeloid cells and is a

strong inducer of IFN-c production. Similarly, the IL-12

receptor (IL-12R) comprises IL-12Rb1 (also common to IL-

23R) the ligand-binding chain and IL-12Rb2, the signal-

transducing chain (205), and is expressed at the surface of T

and NK cells. AR complete IL-12p40 and IL-12Rb1 deficien-

cies were first described in 1998 (177–179), and account for

more than 50% of the cases of MSMD for which a genetic

cause has been identified (182). Both defects have been

reviewed in detail (165, 166, 182, 206) and are summarized

in brief here. All mutant alleles are LOF and their transmission

is AR. The cells of patients do not produce or do not respond

to IL-12 and IL-23, resulting in impaired IFN-c production by

T and NK cells. The development of IL-17 T cells is also

impaired, due to the absence of IL-23, probably accounting

for he candidiasis observed in one-third of the patients (207).

The clinical phenotype of these patients is highly heteroge-

neous, ranging from death in early infancy to an asymptom-

atic course throughout adulthood (165, 166, 182). Most

patients suffered from infections caused by BCG and NTM

(slow or fast growing), and about half were also found to be

susceptible to salmonellosis. Three patients with complete IL-

12p40 deficiency also suffered from TB, one as the only infec-

tious disease observed (166), and the other two together with

other infections (BCG and Salmonella) (208, 209). In this con-

text, 13 patients with IL-12Rb1 deficiency have been found to

have TB in addition to (n = 7) or without (n = 6) other

mycobacterial diseases (165, 207, 210–218). IL-12Rb1 defi-

ciency is the most frequently reported Mendelian cause of

childhood TB to date (see the subsequent paragraph on child-

hood TB).

Anti-cytokine antibodies conferring a predisposition to

mycobacterial diseases

In 2004 and 2005, the first reports of the existence of

autoantibodies against IFN-c in patients with disseminated

mycobacterial diseases were published (219–221). This disor-

der has been found only in adults to date, but it is nevertheless

of interest here as it constitutes an acquired phenocopy of

inborn errors of IFN-c. The mycobacterial species are mostly

NTM, but M.tb has been identified in some cases (219, 222,

223). However, unlike IFN-c, this condition is frequently

associated with pathogens other than mycobacteria, such as

Salmonella, Cryptococcus neoformans, Histoplasma capsulatum, Penicillium

marneffei, and varicella zoster virus. Since 2004, more than 150

adult patients with neutralizing autoantibodies against IFN-c

have been identified (219–244). Most are of Asian descent

and it was recently and elegantly shown for the first time that

the production of anti-IFN-c autoantibodies is under tight

genetic control in humans (242). The authors found that two

linked HLA-II alleles defining a haplotype – DRB1*16:02 and

DQB1*05:02 – were associated with disease, with an odds

ratio of approximately 8.1. In other words, the relative risk of

developing this illness was almost 10 times higher in individ-

uals carrying at least one such haplotype (242). This further

demonstrates the role of IFN-c in anti-mycobacterial immu-

nity. In addition, although rare in children, therapeutic TNF-

a-blocking antibodies have been shown to favor mycobacte-

rial disease in juvenile idiopathic arthritis and pediatric

inflammatory bowel disease (245). This observation is consis-

tent with an abundance of laboratory data demonstrating a

central role for TNF-a in TB immunity (22, 246). Blocking

either of these two pathways (IFN-c and TNF-a) results in vivo

in an increase in susceptibility to clinical disease caused by

mycobacterial species, including M.tb.

Inborn errors of immunity underlying childhood

tuberculosis

We have reviewed above the genetic disorders underlying

severe clinical disease caused by BCG/NTM or M.tb in child-

hood. The studies of diseases caused by weakly virulent myco-

bacteria were instrumental in the identification of the first

genetic basis of TB. Both types of disease have been reported

in some patients (165, 170, 180, 189, 190, 207–209, 211,

216–218, 247). In other patients, TB was the only ‘pheno-

type’ with (166, 176, 188, 191, 192, 210, 212–215, 248,

249) (Table 1) or without a family history of BCG/NTM dis-

ease (176, 188, 191, 192, 210, 213, 248). Overall, these

observations provided the first proof-of-principle that TB is

not only an infectious disease but can also be a Mendelian

genetic disorder, at least in some rare cases. Other cases were

suspected but not genetically proved (250, 251). The most

common genetic defect identified in patients with severe TB

to date is complete IL-12Rb1 deficiency (165). In a more sys-

tematic search for IL12RB1 mutations in 50 children with

severe TB, two patients (4%) with complete IL-12Rb1 defi-

ciency were identified (20). One of these patients was from

Morocco and displayed severe pulmonary TB at the age of

13 years, dying of this disease a few months later. The other

patient was Iranian, developed TB at 7 months of age, and

was treated, with TB recurring and again successfully treated
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at the age of 6 years. An older sibling with the same mutation

suffered from scrofuloderma of the neck at the age of

12 years, successfully treated with anti-mycobacterial therapy.

Unfortunately, no pathological and microbiological investiga-

tions were carried out to check the probable M.tb etiology of

scrofuloderma. These results raise the possibility that a sub-

stantial proportion of children with severe TB carry single-

gene inborn errors of immunity. This proportion has been

estimated at up to 45% by theoretical calculations (16). The

advent of next-generation sequencing, with whole exome and

whole genome sequencing in particular, should provide the

necessary tools to determine this frequency experimentally.

Overall, children and young adults with severe primary TB

should be considered as potentially carrying a known or new

monogenic PID, possibly but not necessarily affecting IFN-c

immunity. Much further work is required if we are to under-

stand fully the pathogenesis of childhood TB, and its genetic

component in particular. However, it has already been estab-

lished that correct IFN-c production and response are

required for efficient anti-mycobacterial immunity, including

against M.tb. Studies in countries that combine a high propor-

tion of consanguineous marriages, a high incidence of TB,

and an excellent medical care, such as Morocco, Turkey, and

Iran, will probably play a key role in this endeavor. Some of

the key discoveries in MSMD and childhood TB have already

been made in patients from these three countries (20, 165,

166, 181, 182, 210, 214, 215).

Concluding remarks

Despite being an ancient and powerful serial killer, TB and

its pathogenesis are still barely understood. The genetic

investigation of the host has provided us with some clues.

Some acquired or inherited PIDs are associated with an

increase in the risk of mycobacterial diseases, including TB. A

number of monogenic disorders impairing IFN-c immunity

lead to more specific vulnerability to mycobacterial infec-

tions. In addition, specific mutations in genes known to

underlie classical PIDs, involving hypomorphism (in the

cases of STAT1 and NEMO) or cell-type specificity (like CYBB),

have been shown to confer selective predisposition to myco-

bacterial infections, including TB. All these discoveries have

provided the proof-of-principle for a monogenic predisposi-

tion to severe TB, which can now be investigated at a large

scale by whole exome and whole genome sequencing. They

also make it possible to decipher and quantify the roles of

specific cells or molecules in natural conditions. At the

immunological level, anti-mycobacterial immunity involves

T cells (as illustrated by AIDS), dendritic cells (IRF8 and

GATA2 deficiencies), and macrophages (CYBB deficiency),

and requires IFN-c immunity to be fully operational (MSMD).

Studies of MSMD have clearly shown that human IFN-c-medi-

ated immunity is a genetically controlled continuous trait

determining the outcome of mycobacterial infections (187).

More pathways will perhaps be identified as involved in the

near future, through detailed genetic investigations based on

next-generation sequencing. These findings have important

medical implications, as they pave the way for new treatments

based on physiopathology. The best example is provided by

patients with IL-12Rb1 deficiency presenting TB due to

impaired IFN-c production, for whom treatment with recom-

binant human IFN-c, in addition to anti-mycobacterial drugs,

seems to be effective (197, 202, 252).
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