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Systemic juvenile idiopathic arthritis (sJIA) is an often severe,
potentially life-threatening childhood inflammatory disease, the
pathophysiology of which is poorly understood. To determine
whether genetic variation within the MHC locus on chromosome 6
influences sJIA susceptibility, we performed an association study
of 982 children with sJIA and 8,010 healthy control subjects from
nine countries. Using meta-analysis of directly observed and im-
puted SNP genotypes and imputed classic HLA types, we identified
the MHC locus as a bona fide susceptibility locus with effects on
sJIA risk that transcended geographically defined strata. The stron-
gest sJIA-associated SNP, rs151043342 [P = 2.8 × 10−17, odds ratio
(OR) 2.6 (2.1, 3.3)], was part of a cluster of 482 sJIA-associated SNPs
that spanned a 400-kb region and included the class II HLA region.
Conditional analysis controlling for the effect of rs151043342
found that rs12722051 independently influenced sJIA risk [P =
1.0 × 10−5, OR 0.7 (0.6, 0.8)]. Meta-analysis of imputed classic
HLA-type associations in six study populations of Western Euro-
pean ancestry revealed that HLA-DRB1*11 and its defining amino
acid residue, glutamate 58, were strongly associated with sJIA [P =
2.7 × 10−16, OR 2.3 (1.9, 2.8)], as was the HLA-DRB1*11—HLA-
DQA1*05—HLA-DQB1*03 haplotype [6.4 × 10−17, OR 2.3 (1.9,
2.9)]. By examining the MHC locus in the largest collection of sJIA
patients assembled to date, this study solidifies the relationship
between the class II HLA region and sJIA, implicating adaptive
immune molecules in the pathogenesis of sJIA.

systemic juvenile idiopathic arthritis | Still’s disease | human leukocyte
antigen | autoinflammation

Juvenile idiopathic arthritis (JIA) is a classification term de-
scribing children under the age of 16 who develop chronic

arthritis (persisting for more than 6 wk) without an identifiable
cause (1). Under this classification scheme there are seven sub-
types of JIA, each with its own unique set of clinical characteristics
and manifestations (1). One of these subtypes is systemic juvenile
idiopathic arthritis (formerly known as systemic juvenile rheuma-
toid arthritis or systemic juvenile chronic arthritis, henceforth re-
ferred to as sJIA), a rare chronic, inflammatory disease of childhood
whose etiology is poorly understood (2).
Although sJIA is classified among the JIA subtypes, reflecting

the importance of arthritis in its definition, its overtly inflamma-
tory phenotype clearly distinguishes sJIA from the other six
subtypes (3). Children with sJIA exhibit recurrent episodes of
unexplained, quotidian (daily spiking) fever, together with chronic

arthritis and other manifestations, including generalized lymphoid
hyperplasia, hepatosplenomegaly, serositis, and a characteristic
salmon pink, evanescent skin rash (1). During periods of active
inflammation, children with sJIA can develop profound elevation
of serum acute-phase reactants and ferritin, and at these times, up
to one-third of children with sJIA begin to manifest features of
macrophage activation syndrome, a severe and life-threatening
form of cytokine storm (4, 5). The presentation and clinical
course of sJIA varies, with some cases involving predominantly
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To determine whether genetic variation within the MHC locus
influences the risk of developing systemic juvenile idiopathic
arthritis (sJIA), we examined a dense set of MHC region single
nucleotide polymorphisms, classic HLA alleles, and the indi-
vidual amino acids of HLA molecules in nine independent sJIA
case-control populations. Association testing revealed that
genetic variants within the MHC class II gene cluster signifi-
cantly influenced sJIA risk in every study population. The
strongest risk factor for sJIA was HLA-DRB1*11, which con-
ferred at least a two-fold increase in disease risk in each pop-
ulation studied. These data implicate the interaction of antigen
presenting cells with T cells in the pathogenesis of sJIA.
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inflammatory features that tend to respond to anti–IL-1 therapies
(6) and others following an arthritis-predominant disease course
that may ultimately lead to chronic, destructive, treatment-re-
fractory arthritis (7, 8).
sJIA is a genetically complex trait, meaning that its development

depends on a combination of genetic and environmental risk fac-
tors (9). Investigations of genetically complex diseases rely upon
comparisons of variant allele frequencies in ancestrally similar
populations of affected individuals and healthy subjects. Given an
estimated incidence of 0.6 new cases of sJIA per 100,000 children
per year among populations of European ancestry (10), the as-
sembly of case-control collections has been the primary obstacle to
the genetic investigation of sJIA. As a result, most genetic studies
of sJIA have examined modestly sized collections. The most in-
tensively studied genetic locus in sJIA has been the cluster of HLA
molecules within the MHC locus (11–16). HLA molecules are a
critical component of the adaptive immune system, acting to pre-
sent peptide antigens to antigen receptors on T lymphocytes.
Studies of classic HLA locus-types in sJIA have often reported one
or more sJIA-associated alleles (11–16), frequently at class II HLA
loci, although no association has met the contemporary standard of
genome-wide significance. In fact, there has been little agreement
and no consensus among these studies, adding uncertainty to the
proposed relationship between sJIA and the MHC locus.
To determine whether genetic variation of the MHC locus

influences sJIA risk, we assembled the largest sJIA study pop-
ulation to date, including nine populations from North America,
South America, and Europe. Using a combination of SNP gen-
otyping and imputation of both SNPs and classic HLA alleles, we
performed association testing and meta-analyses to identify sJIA
risk factors within the MHC locus.

Results
Dataset Assembly and Quality Control. We performed SNP geno-
typing in a collection of 1,413 children from nine countries, in-
cluding 982 children with sJIA and 431 healthy children. SNP
genotype data from this collection were combined with SNP ge-
notype data, in silico, from five healthy control populations that
included an additional 7,579 control subjects, producing a total
study population of 8,992 individuals. After quality-control opera-
tions, the final dataset included nine geographically defined, an-
cestrally matched case-control collections with a total of 770 sJIA
patients and 6,947 control subjects (Figs. S1–S3 and Table S1). The
majority of subjects excluded from the study (174 of 212 cases, 744
of 1,063 controls) were removed because of ancestral dissimilarities
with their strata (Fig. S1 and Table S1A). This approach produced
nine very well-matched case-control strata, as evidenced by geno-
mic control inflation factors (λGC) between 1.00 and 1.004 (Fig.
S3). Importantly, because some strata included in silico control
data with sets of SNPs from different genotyping platforms that
only partially intersected with the set of SNPs that we generated in
the cases, the number of analyzable SNPs was reduced in these
strata. As a result, the number of directly genotyped MHC region
SNPs that passed the quality control process in both cases and
controls varied by stratum, ranging from 938 to 9,575 SNPs (Table
S1B). These sets of high-quality SNPs were used as the basis for
SNP imputation with the multiancestral 1,000 Genomes reference
population, generating datasets of between 27,005 and 34,992
MHC region SNPs with minor allele frequencies (MAF) > 0.05
that were imputed with high quality (Table 1 and Table S1B).

Association Testing and Meta-Analysis of MHC Locus SNPs in Nine sJIA
Populations. Association testing of the MHC region SNPs was
performed in each of the nine case-control populations under
the additive and dominant models. Fixed-effect meta-analysis of
the associations identified the strongest associations between
sJIA and the MHC locus under the dominant model (Fig. 1).
Among the 38,441 MHC region SNPs that were genotyped or
imputed in at least three populations, we identified 482 sJIA-
associated markers that exceeded the stringent threshold of ge-
nome-wide significance corrected for the two models tested

(P < 2.5 × 10−8) (Fig. 1A and Table S2A). sJIA-associated SNPs
were positioned between NOTCH4 and HLA-DQB1 (HLA-
DQβ1 chain), with one peak of association in the BTNL2/HLA-
DRA (HLA-DRα chain) region and a second in the HLA-DRB1
(HLA-DRβ1 chain)/HLA-DQA1 (HLA-DQα1 chain) region.
The top SNP from this analysis, rs151043342, was located 8.1 kb 3′
of HLA-DRA [P = 2.8 × 10−17; odds ratio (OR) 2.6 (2.1, 3.3)] (Fig.
1A). This SNP conferred risk of sJIA in five of nine study pop-
ulations, and the OR was suggestive of risk in three other study
populations despite having 95% confidence intervals that included
one (Fig. 1B and Tables S2A and S3). The top SNP in the HLA-
DRB1/HLA-DQA1 region was rs115124338 [P = 1.9 × 10−14; OR
2.2 (1.8, 2.7)] (Fig. 1A and Tables S2A and S3), located 6.1-kb
upstream of HLA-DQA1. To determine whether multiple in-
dependent sJIA risk factors existed within the MHC locus, we
repeated association testing while adjusting for the effect of the top
SNP from the study, rs151043342 (Fig. 1A). This process revealed
that rs12722051, encoding the Y25F missense variant of HLA-
DQα1, independently influenced sJIA [Pregressor = 1.0 × 10−5; OR
0.7 (0.6, 0.8)] (Fig. 1 A and C and Table S3). HLA-DQα1 Y25F is
most frequently found in HLA-DQA1*02, which demonstrated
suggestive evidence of association with sJIA (Table 2).
Fixed-effect meta-analysis identified a high probability of

heterogeneity (I2 > 0.7) in 398 of 38,441 MHC region SNPs,
including 2 of the 482 sJIA-associated markers (rs79174031 and
rs149061153). Upon repeating the association meta-analysis of
these 398 SNPs under the random-effects model, we found no
association between sJIA and any of these SNPs (Fig. S4).

Imputation, Association Testing, and Meta-Analysis of Classic HLA
Types and Amino Acids in sJIA. To further investigate the re-
lationship between sJIA and the MHC locus, we performed
SNP-based imputation of classic HLA types and amino acids
in six study populations. Importantly, the strata from Turkey,
Brazil, and Argentina were not included in this analysis because
the reference dataset used for HLA imputation did not contain
individuals ancestrally matched to these populations. The accu-
racy of HLA imputation was evaluated in subsets of the United
States and United Kingdom populations for which directly ob-
served HLA-type data were available. The imputed HLA-DRB1
types were 97.5% and 95% concordant at two-digit resolution
and 93.5% and 91.1% concordant at four-digit resolution in the
United States and United Kingdom populations, respectively
(Table S4). Association testing of two-digit and four-digit HLA
types was performed separately in the six study populations.
Fixed-effect meta-analysis of the HLA-type associations identi-
fied strong associations between sJIA and several class II HLA
alleles (Table 2). The strongest association was between sJIA
and HLA-DRB1*11 alleles under the dominant model [P = 2.7 ×
10−16; OR 2.3 (1.9, 2.8)] (Fig. 1D and Table 2), with both the
HLA-DRB1*11:01 [P = 7.1 × 10−14; OR 2.3 (1.9, 2.9)] and HLA-
DRB1*11:04 [P = 7.8 × 10−5; OR 2.0 (1.4, 2.7)] alleles conferring
significant risk of sJIA (Fig. 2 A and B, Table 2, and Table S3).
Association testing conditioned for the effect of HLA-DRB1*11
on sJIA risk revealed no significant residual associations among
HLA locus-types or regional SNPs (Fig. 1E).
To examine the molecular basis of sJIA risk within class II

HLA molecules, we examined the polymorphic amino acid po-
sitions of classic HLA molecules for association with sJIA. Fixed-
effect meta-analysis of amino acid associations from six study
populations identified 14 sJIA-associated positions whose sig-
nificance exceeded the genome-wide significance threshold, as
well as an additional 20 positions that exceeded a significance
threshold Bonferroni-corrected for 580 observed polymorphic
amino acid positions (P < 8.6 × 10−5) (Table S2B). Among these,
the dimorphic position 58 of HLA-DRβ1 had the strongest asso-
ciation with sJIA [P = 3.1 × 10−16; OR 2.3 (1.9, 2.8)] (Figs. 1D and
2) with metrics of association that were virtually identical to those
observed for HLA-DRB1*11. Because HLA-DRB1*11 is the only
imputable HLA-DRβ1 that contains glutamate 58, the effects
of these two variables on sJIA risk are indistinguishable. After
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completely adjusting for the effect of position 58 on sJIA risk,
association testing identified no significant residual associations
among the amino acids, HLA locus-types, or SNPs (Fig. 1E).

Analysis of Haplotypes and Linkage Disequilibrium Within the MHC
Locus. Given that the sJIA susceptibility locus contained disease-
associated SNPs spanning at least eight genes, we hypothesized
that sJIA-associated HLA-DRB1*11 alleles were inherited as a
part of a longer haplotype. To test this hypothesis, we first as-
sembled and tested haplotypes of best-guess, imputed classic
HLA locus-types in each study population for association with
sJIA. Fixed-effect meta-analysis of haplotype associations identi-
fied a strong, dominant association between sJIA and the common
European haplotype, HLA-DRB1*11–HLA-DQA1*05–HLA-
DQB1*03 (P = 6.4 × 10−17) (Table 2 and Table S3). Moreover,
this haplotype was composed of two subhaplotypes, one bearing

HLA-DRB1*11:01 and a second bearing HLA-DRB1*11:04, both
of which conferred risk of sJIA (Fig. 3 A and B, Table 2, and
Table S3).
To define the boundaries of the DRB1*11-containing risk

haplotypes, we separately combined the top 100 population-
specific sJIA-associated SNPs with the classic HLA locus-types
in the United States and United Kingdom populations and re-
peated the haplotype analyses. In the United States population,
a 243-kb sJIA risk haplotype that included the DRB1*11–
DQA1*05–DQB1*03 haplotype and 99 SNPs spanned the region
from HLA-DRA to HLA-DQB1 [P = 8.1 × 10−5; OR 1.8 (1.3,
2.4)] (Fig. 3C). This risk haplotype was present at a frequency of
14.2% in United States sJIA cases and 8.6% in United States
healthy controls. In the United Kingdom population, we identi-
fied a 397-kb sJIA risk haplotype composed of 93 SNPs and the
DRB1*11–DQA1*05–DQB1*03 haplotype. This haplotype
encompassed the region from C6orf10 to HLA-DQB1 and it was
present at a frequency of 12.2% in United Kingdom sJIA cases
and 4% in United Kingdom healthy controls [P = 2.6 × 10−10;
OR 3.4 (2.3, 5.0)] (Fig. 3C). Given that the entire United States
risk haplotype was contained within the United Kingdom risk
haplotype, we examined the intersection of markers from the
United States and United Kingdom risk haplotypes to determine
the extent of shared identity between their respective sJIA risk
haplotypes. Based upon 12 intersecting SNPs and HLA types
from the DRβ1, DQα1, and DQβ1 loci, the United States risk
haplotype was identical to the homologous segment of the
United Kingdom risk haplotype (Table S3). To validate this
finding, we expanded the analysis to include the top 400 pop-
ulation-specific sJIA-associated SNPs from the United States
and United Kingdom populations, revealing an intersection of
110 SNPs. Examination of the 110 intersecting SNPs and the
HLA types revealed that an identical, 243-kb haplotype was
present in both populations. This haplotype, which included

Table 1. Membership of nine geographically defined sJIA case-
control strata following quality control operations

Stratum Cases Controls MHC-region SNPs*

United States 243 1,718 34,992
United Kingdom 202 4,097 32,105
Germany 115 193 34,458
Turkey 49 94 33,115
Italy 49 59 34,434
Brazil 48 62 31,814
Argentina 33 115 32,870
Canada 17 427 31,988
Spain 14 182 27,005
Total 770 6,947

*Imputed with info score > 0.8 and MAF > 0.05.
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HLA-DRA, the entire HLA-DRB gene cluster, HLA-DQA1, and
HLA-DQB1, was associated with sJIA risk in both the United
States and United Kingdom populations (Fig. 3C and Table S3).

Discussion
By using a stratified study design to interrogate a combination
of directly observed and imputed SNP genotypes and imputed
classic HLA alleles in nine independent sJIA case-control pop-
ulations, this study provides the most extensive investigation of
the MHC locus in sJIA to date. The data clearly demonstrate
that genetic variants of class II HLA genes influence sJIA sus-
ceptibility in multiple populations of European ancestry. This
work identifies HLA-DRB1*11 alleles as the strongest single risk
factor for sJIA with a pooled OR of 2.3, and further shows that
the DRB1*11-DQA1*05-DQB1*03 haplotype is associated with
sJIA in each of the six populations examined. Haplotype analysis
of SNP and HLA data in the two largest case-control subpopu-
lations (United States and United Kingdom) revealed a con-
served, 243-kb sJIA-associated class II HLA haplotype in both
populations, raising the possibility that additional constituents of
the haplotype may influence sJIA risk, in concert with HLA-
DRB1*11. By demonstrating that class II HLA molecules influ-
ence sJIA susceptibility, this study implicates adaptive immunity
in the pathophysiology of sJIA.
We and others have long sought to determine whether HLA

genes are involved in the pathogenesis of sJIA. This relationship
has been examined in children from a variety of ancestral
backgrounds. Many alleles of HLA-DRβ1, including HLA-
DRB1*11 (16), have been reported to affect sJIA risk in studies
of single populations (11–16). However no association has
reached the level of genome-wide significance and no single
HLA-DRB1 allele has been found to influence sJIA risk across
studies or populations (9, 17), leading some to conclude that
class II HLA molecules are not risk factors for sJIA (18).
In designing the present study, we sought to overcome the

factors that have limited earlier HLA studies of sJIA. The
sample sizes of the HLA studies cited above were modest (35–
108 cases) producing underpowered studies. We addressed this
by establishing an international consortium and examining the
largest sJIA study collection ever assembled. The case-control
populations in the earlier studies were assembled without the
benefit of ancestry-informative genetic markers. As a result, they
were susceptible to population stratification, which occurs when
ancestry-specific genetic differences between the case and con-
trol groups are errantly classified as disease-associated genetic
differences. We addressed population stratification by performing

clustering analyses of genome-wide SNP data to strictly define the
membership of each stratum, and again by adjusting the asso-
ciation analyses for ancestry informative principal components
(PCs). Additionally, serologic and PCR-based HLA-typing
assays that were used in the earlier studies of sJIA are very
costly, making direct HLA-typing cost prohibitive in our study.
Therefore, we used a highly accurate imputation method to
determine the classical HLA types in a population of over 7,000
subjects.
Each subject included in this study was evaluated by a senior

pediatric rheumatologist expert in the diagnosis and treatment of
sJIA, and every case fulfilled the International League of Asso-
ciations for Rheumatology criteria for sJIA. This study includes
patient collections that were assembled for independent genetic
investigations at more than 15 separate pediatric rheumatology
centers, many before the availability of genome-wide association
analysis or the creation of the International Childhood Arthritis
Genetics (INCHARGE) Consortium. As a result, the selection
and timing of clinical data points varied among the populations.
Additionally, the inability to recontact subjects within the consent
documents at some centers precluded additional data collection
from those subjects. Nonetheless, we have assembled clinical in-
formation from approximately half of the subjects in the study
population (Table S5). Among this population subset, the pro-
portion of subjects with the monophasic, polycyclic, and persistent
disease courses, macrophage activation syndrome and persistent
arthritis were each consistent with previous reports (4, 9). Al-
though subanalyses stratified by these phenotypes would be of
great interest, they were not performed in the current study be-
cause subdivision of the study population would have greatly re-
duced the statistical power to detect associations.
The implication of HLA-DRB1*11 in sJIA susceptibility rein-

forces the uniqueness of sJIA among the JIA subtypes on a ge-
netic level, clearly distinguishing sJIA from the two class I HLA-
associated JIA subtypes, enthesitis-related JIA and psoriatic
JIA. It also differentiates sJIA from seropositive polyarticular
JIA, which is strongly associated with shared epitope-encoding
alleles of HLA-DRB1, but not with HLA-DRB1*11 (19). Surpris-
ingly, HLA-DRB1*11 alleles and DRB1*11-DQA1*05-DQB1*03

Table 2. sJIA-associated classical HLA alleles and haplotypes
identified by meta-analysis of six independent populations

Allele or haplotype Pmeta OR (95CI) I2

HLA-DRB1*11 2.7 x 10−16 2.3 (1.9, 2.8) 0.17
HLA-DRB1*11:01 7.1 x 10−14 2.3 (1.9, 2.9) 0.00
HLA-DQA1*05:01 2.6 x 10−9 1.7 (1.4, 2.0) 0.00
HLA-DQA1*05 2.6 x 10−9 1.7 (1.4, 2.0) 0.00
HLA-DQB1*03:01 9.2 x 10−9 1.7 (1.4, 2.0) 0.11
HLA-DRB1*11:04 7.8 x 10−5 2.0 (1.4, 2.7) 0.00
HLA-DQB1*03 1.5 x 10−4 1.4 (1.2, 1.7) 0.40
HLA-DQA1*02 5.4 x 10−4 0.7 (0.6, 0.8)
DRB1*11–DQA1*05–

DQB1*03
6.4 x 10−17 2.3 (1.9, 2.9) 0.32

DRB1*11:01–DQA1*05:01–
DQB1*03:01

3.1 x 10−11 2.2 (1.7, 2.8) 0.00

DRB1*11:04–DQA1*05:01–
DQB1*03:01

1.5 x 10−6 2.3 (1.6, 3.1) 0.22

After correcting for 175 imputed classic HLA types, significance was
defined as P < 2.9 x 10−4. Pmeta, P value from fixed-effect meta-analysis of
dominant model associations; OR, odds ratio under the dominant model;
95CI, 95% confidence interval; I2, I2 test of heterogeneity.
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Fig. 2. Multiple HLA-DRB1*11 alleles are associated with sJIA. Forest plots
depict the odds ratios of the sJIA-associated HLA-DRB1*11 family members,
HLA-DRB1*11:01 (A) and HLA-DRB1*11:04 (B). Ribbon models of an HLA-DR
molecule (C and D) demonstrate the two defining features of HLA-DRB1*11
molecules: a glutamate residue at position 58 (white) on the exterior surface of
the molecule with its side-chain pointing away from the peptide-binding
groove, and the combination of peptide-binding groove residues that is
unique to HLA-DRB1*11 (shown in blue). The models were created from
PDB ID code 3LQZ. *Allele frequency < 0.01%.
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haplotypes also influence the risk of developing oligoarticular
JIA (oJIA) and seronegative polyarticular JIA (snpJIA), which
are phenotypically very similar to one another but which are very
different from sJIA (14, 16). Unlike sJIA, where only the HLA-
DRB1*11 allele influences disease susceptibility, HLA-DRB1
shows allelic heterogeneity in oJIA/snpJIA with numerous HLA-
DRB1 alleles affecting disease risk. Additionally, unlike oJIA and
snpJIA, sJIA demonstrated no association with either the HLA-
DP gene cluster or with the class I HLA locus, even after con-
trolling for the effect of HLA-DRB1*11.
Class II HLA molecules present peptide antigens on the surfaces

of antigen-presenting cells (APCs) for recognition by T-cell recep-
tors (TCR) on CD4+ T cells (20). It is possible that HLA-DRB1*11
molecules participate in sJIA pathogenesis through an antigen-de-
pendent mechanism, thereby implicating CD4+ T lymphocytes and
adaptive immunity in the pathogenesis of sJIA. Although the evi-
dence for autoimmunity in sJIA is scant, there are some data that
support a role for T lymphocytes in its pathophysiology, particularly
in the subset of sJIA with an arthritis-predominant course. Alter-
ations in the pattern of T-cell–secreted cytokines with a mixed Th1/
Th2 pattern have been observed in sJIA patients (21). It has also
been observed that children with sJIA have an increased proportion
of the proinflammatory Th1 and Th17 cells, relative to age-matched
healthy subjects (22). Additionally, two studies of abatacept
(CTLA4-Ig), which prevents T-cell activation by inhibiting cos-
timulation through CD80 and CD86, found it to be an effective
treatment for children with chronic, articular sJIA (7) and re-
calcitrant sJIA with systemic features (8).
Class II HLA molecules also have a role in innate immunity

and the regulation of APCs. Engagement of class II HLA on the
surface of APCs by TCR and non-TCR ligands activates signaling
pathways in APCs that regulate their function and survival (23–25).
For example, ligation of surface-expressed class II HLA molecules
on APCs by superantigens activates the myeloid differentiation

primary response gene 88 signaling pathway (26), inducing expres-
sion of proinflammatory cytokines (27). Moreover, intracellular
class II HLA molecules are important regulators of Toll-like re-
ceptor signaling in both monocytes and dendritic cells (24). Given
that sJIA is a disease marked by systemic inflammation with en-
hanced production of proinflammatory cytokines (3, 17), it is at-
tractive to hypothesize that HLA-DRB1*11 molecules contribute to
sJIA pathogenesis through dysregulation of innate immunity and
promotion of proinflammatory cytokine production by APCs.
HLA-DRB1*11 alleles are defined by glutamate at position 58

(Fig. 2 C and D), a residue whose side-chain is directed away
from the peptide-binding groove. The exterior positioning of
residue 58 may indicate a disease-relevant effect that is in-
dependent of antigen presentation, such as a superantigen-like
reaction. However, it is not clear from our analyses whether the
association of HLA-DRB1*11 alleles with sJIA is driven by
glutamate 58 or by the combination of highly polymorphic
peptide-binding groove amino acids that uniquely define HLA-
DRB1*11 (Fig. 2 C and D). Ultimately, functional studies are
necessary to elucidate the mechanisms through which HLA-
DRB1*11 participates in the pathophysiology of sJIA.
In summary, this study provides strong evidence for a role for

HLA-DRB1*11 as a major risk factor for sJIA. Our data dem-
onstrate that alleles of this family confer a large effect (OR 2.3)
on sJIA risk across study populations, reinforcing their potential
importance in disease pathogenesis. Further attention should be
focused on determining the specific mechanism through which
HLA-DRB1*11 alleles influence sJIA risk, whether through ef-
fects on T cells, APCs, or both, to allow for the rational design of
therapeutics for sJIA.

Methods
Patient Samples. Blood samples were obtained from children who were di-
agnosed with sJIA by pediatric rheumatologists at collaborating centers
in nine countries (SI Methods). Blood samples from geographically matched
healthy control subjects were obtained, and where available existing
SNP genotype data from geographically matched healthy control indi-
viduals were used, in silico. The INCHARGE project was approved by an
institutional review board (IRB) at the University of Manchester; subjects
were enrolled in accordance with all local ethics regulations, with in-
formed parental consent, and with approval of local IRBs at each con-
tributing center (SI Methods).

SNP Genotyping, Imputation, Association Testing, and Meta-Analysis. We per-
formed SNP genotyping of genomic DNA from children with sJIA and healthy
children using Human Omni1M beadchips and an iScan reader (Illumina)
according to the manufacturer’s specifications. Samples were stratified by
country of origin and rigorous quality control operations were performed
separately in each case and control group (SI Methods). Geographically
matched case and control populations were then assembled into nine case-
control strata, each composed of the SNP intersection between the respective
case and control groups. MHC locus SNPs (chromosome 6: 29 M–33 M; human
genome build 19) were extracted from the conditioned, high-quality SNP data
of each case-control stratum and were used as the basis for SNP imputation
(SI Methods). Imputed SNP data were filtered to include common SNPs (MAF >
0.05) that were imputed with high quality (info > 0.8). Probabilistic genotypic
data were subjected to frequentist association testing adjusted for ancestry
informative PCs and meta-analyses were performed.

Imputation, Association Testing, and Meta-Analysis of Classic MHC Alleles and
Amino Acid Residues. Imputation of HLA types and their corresponding amino
acid polymorphisms at the eight classic HLA loci was performed in the United
States, United Kingdom, German, Italian, Canadian, and Spanish case-control
collections using MHC region SNP genotypes, SNP2HLA software, and a
specially designed reference panel (SI Methods). Probabilistic HLA data were
tested for association with sJIA using logistic regression adjusted for ancestry
informative PCs and association results were meta-analyzed. Haplotype analyses
were performed with Haploview and SVS7.
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Fig. 3. Extended, HLA-DRB1*11-containing haplotypes are associated with sJIA.
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