Clinical and genetic features of $IL12R\beta1$ deficiency: Single center experience of 18 patients

Çağman Tan¹, Deniz Çağdaş-Ayvaz¹, Ayşe Metin², Özlem Keskin³, İlhan Tezcan¹, Özden Sanal¹

¹Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, ²Dışkapı Children's Hospital, Ankara, and ³Division of Immunology and Allergy, Department of Pediatrics, Gaziantep University Faculty of Medicine, Gaziantep Turkey. E-mail: cagmantan@gmail.com

Received: 26th August 2016, Revised: 17th October 2016, Accepted: 21st October 2016

SUMMARY: Tan Ç, Çağdaş-Ayvaz D, Metin A, Keskin Ö, Tezcan İ, Sanal Ö. Clinical and genetic features of $IL12R\beta1$ deficiency: Single center experience of 18 patients. Turk J Pediatr 2016; 58: 356-361.

Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by infections with weakly virulent mycobacteria (BCG and environmental mycobacteria), *M. tuberculosis*, Salmonella, candida and some other intracellular microorganisms. Nine different genetic defects have been defined to cause MSMD and IL-12R β 1 deficiency is the most common form. We present here the clinical and genetic features of 18 patients with IL12R β 1 deficiency diagnosed by surface expression of IL-12R β 1 and Sanger's sequencing. Seventeen patients showed classical presentation (infections with BCG, salmonella and candida) while one patient experienced recurrent leishmaniasis. In all patients the percentage of activated lymphocytes with surface expression of IL12R β 1 was <1% indicating that it is an effective method for the screening of these patients. Three recurrent mutations were responsible for 85% of our families. Prognosis was good in patients, in whom specific antimicrobial therapy was given before dissemination occurs, as well as prophylactic antimicrobial treatment when needed and IFN- γ therapy for severe infectious episodes.

Key words: IL-12R β 1, MSMD, BCG, IL-12R β 1 deficiency.

Mendelian susceptibility to mycobacterial disease (MSMD), which is one of the disorders of Innate Immunity, is a rare disorder in which the patients are susceptible to severe diseases with weakly virulent mycobacteria, such as Mycobacterium bovis in Bacille Calmette-Guerin (BCG) and environmental mycobacteria (EM), also known as atypical or nontuberculous mycobacteria in otherwise healthy individuals^{1,2}. These patients are also susceptible to Salmonella, Candida and M. tuberculosis species^{2,3}. Nine disease-causing genes have been described, including three genes controlling the response to IFN- γ (IFNGR1, IFNGR2, STAT1), four involved in IFN-γ production (IL12B, IL12RB1, NEMO, ISG15), one involved in the IFN- γ dependent induction of IL-12 (IRF8) and another gene controlling the macrophage respiratory burst, which can be triggered by IFN- γ (CYBB)^{2,4-8}. The considerable allelic heterogeneity at some

of these loci has resulted in the definition of up to 18 different inborn errors of immunity². However, the genetic etiology of about half the cases of MSMD has not been identified yet².

IL-12R β 1 deficiency is the most common form of MSMD². IL-12R β 1 is a common receptor chain of the IL-12 and the IL-23 receptors and deficiency of IL-12R β 1 causes a profound defect in both IL-12 and IL-23 signaling^{2,7,8,9}. IL-12 is an important cytokine for the development of IFN-y producing T cells and also induces IFN- γ production by Natural killer (NK) and Natural Killer T (NKT) cells⁹. The lack of IL-12 stimuli impairs the production of IFN- γ^2 . In IL-12R β 1 deficient patients the development of IL-17 producing T cells (Th17 cells) was also found to be impaired¹⁰. Although the exact involvement of IL-23 and Th17 cells is not clear, IL-23 and IL-17 are clearly implicated in various autoimmune and inflammatory disorders and are important for adaptive host defense against

Ref.	[16]	[17]	[17	[17]	[17]	[17]	[18]	[3]		[19]							[3]	
Outcome	alive	alive	deceased	alive	deceased	deceased	deceased	alive	alive	alive	alive	alive	unknown	alive	alive	alive	alive	
Consanguinity	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Initial Complaints	Salmonella infection	Local draining BCG adenitis	Draining BCG adenitis	Multiple granulomatous lymphadenitis	Úraining BCG adenitis	Draining BCG adenitis	Draining BCG adenitis Cervical	Acinetobacter adenitis, Salmonella	infection Draining BCG adenitis	Salmonella infection	Local draining BCG adenitis	Local draining BCG adenitis	Local draining BCG adenitis	Local draining BCG adenitis	Local draining BCG adenitis	Local draining BCG adenitis	Salmonella infection Cervical adenitis	
Age of onset (months)	18	2	4	6	4	4	18	6 years	11	30	30	ø	6	ø	80	80	5 years	
Mutation	R175W	c.592T>C	c.783+1G>A	c.783+1G>A	c.783+1G>A	c.783+1G>A	NA	c.783+1G>A	R175W	R175W	R175W	c.64+2T>G	c.64+2T>G	c.64+2T>G	c.64+2T>G	R175W	R173P	
Other Clinical characteristics	Recurrent Leishmaniasis	Recurrent systemic BCG Inf.	Disseminated BCG Inf.	BCG infection? Leucocytoclastic vasculitis	Disseminated BCG Inf.	Disseminated BCG Inf.	Disseminated BCG Inf.	Leucocytoclastic vasculitis	Systemic BCG Inf.	Recurrent Salmonella inf. E. histolitica	Multiple draining BCG adenitis	Multiple draining BCG adenitis	Multiple draining BCG adenitis	Multiple draining BCG adenitis Bacterial nneumonia	Multiple draining BCG adenitis	Dacterial preutionia Multiple draining BCG adenitis	Recurrent Salmonella inf. Recurrent multiple Salmonella adenitis	
Salmonella Infection	+	ı	ı	+	ı	·	ı	+		+	ı	·		ı	ı	ı	+	
Candidiasis	ı	ı	+	+	+	+	+	I	ı	ı	ı	·	ı		ı	ı	ı	
Local BCG Inf.	ı	+	+	μ	+	+	+	ı	+	- No BCG scar PPD was +	+	+	+	+	+	+	- after 1st vaccination + after 2nd vaccination at age 7	al age /
BCG Vaccinated	1	+	+	ı	+	+	+	I	+	+	+	+	+	+	+	+	+	
Sex	Μ	Μ	Μ	ц	ц	Μ	Ц	М	M	ц	Μ	Μ	Μ	Μ	Μ	ц	Μ	
Age (years)	16	23	Died at age 4	19	Died at age 7	Died at age 3	Died at age 4	19	12	14	12	12	12	6	6	5	25	
ON	1	2	3-1	3-2	4-1	4-2	5-1	5-2	9	7	8	6	10	11	12	13	14	

extracellular bacteria and Candida albicans^{11,12}.

In this study, we present the clinical features and genetic characteristics of 18 patients with $IL12R\beta 1$ deficiency.

Material and Methods

The patients included in the study were diagnosed at and followed up at Hacettepe İhsan Doğramacı Children's Hospital Pediatric Immunology Division between 1998-2013. Eighteen patients from 14 families (11 boys, 7 girls) who have symptoms suggestive for MSMD (BCG infection and recurrent salmonellosis) or history of sibling death due to BCG infection were evaluated. The expression of the IL- $12R\beta1$ was detected on the lymphocyte surface by flow cytometry after the lymphocytes were stimulated with PHA in vitro. Mutation analyses were done by Sanger sequencing and all coding exonic fragments and the exon-intron boundaries of the IL12RB1 gene was amplified and sequenced for detection of mutations. All flow cytometric analysis was done in the Pediatric immunology laboratory of Hacettepe Children's Hospital as well as Sanger sequencing in families 6, 8-13 and 15. Mutation analysis in the rest of the families were done in different centers and published previously.

Results

All index cases were presented clinically either with BCG or salmonella infections. The first clinical infection occurred at ages 2 months to 6 years. All 14 patients except one who were BCG vaccinated developed BCG infection (Table I).

BCG infection (draining lymphadenitis developed after BCG vaccine or systemic or disseminated BCG infection) was present in 14, isolated salmonellosis in 3 patients, a combination of BCG and salmonella infections in 2, Salmonella and recurrent Leishmania infections in 1 patient.

Three patients presented with salmonella infection, another two patients had concomitant salmonella infection. One patient who was not BCG vaccinated presented with Henoch-Schonlein purpura (HSP) and dramatic and abrupt improvement was observed with antibiotics against salmonella, another patient developed leukocytoclastic vasculitis during follow up. Candidiasis was the accompanying feature in five patients. One patient experienced recurrent leishmaniasis along with salmonellosis. The follow up period was between 3 to 21 years (8 families reported earlier, Table I). Patients were given prolonged specific antimicrobial agents, prophylaxis when needed and IFN- γ particularly during severe infectious episodes. Four patients died of BCG infections who had advanced or disseminated mycobacterial infection when first admitted. The percentage of lymphocytes with surface IL12R^β1 expression was found to be less than %1 in all patients (Fig 1).

Fourteen families had 5 different homozygous mutations, the most common mutation was

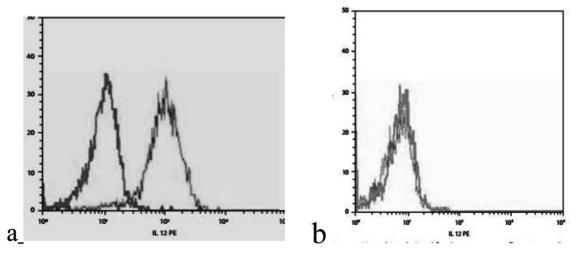


Fig.1. The histograms of IL-12R β 1 expression a) in a healthy individual b) in a patient

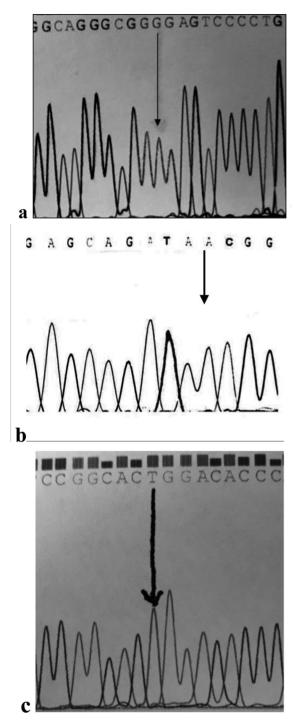


Fig.2. The most frequent mutations identified in our patients

a)Homozygous c. 64+2T>G b) Homozygous c.783+1G>A c)Homozygous R175W

c.523C>T (p.R175W) (in 6 families) followed by 783+1G>A (R173P) (in 4 families) and 64+2T>G (in 2 families). One family each had c.592T>C-and c.518G>C mutations (Fig. 2), (Table I).

Discussion

Mendelian susceptibility to mycobacterial diseases (MSMD), which is one of the disorders of Innate Immunity, is a rare immunodeficiency syndrome characterized by a narrow vulnerability to poorly virulent mycobacteria, such as BCG and EM ^{1,2}. These patients are also susceptible to salmonella, candida and M. tuberculosis species^{2,13,14}. Some other intracellular microorganisms have been reported in a small number of patients¹³. Thus the infectious phenotype extends beyond susceptibility to mycobacterial diseases.

IFN- γ R1 deficiency is the first genetic defect identified in these patients while the most common genetic etiology of MSMD is IL-12R β 1 deficiency^{2,4,13}.

This study consists of 18 patients with IL12R β 1 deficiency. Fourteen patients out of 15 who were BCG vaccinated presented with BCG infection. The most common and earliest infection occurred was BCG infection probably because of the early encounter with these microorganisms¹³. Three patients presented with salmonella infections, another two were an associated infection. Five patients had associated candidiasis and one patient experienced recurrent leishmaniasis. None of our patients developed infection with *M. tuberculosis*.

One patient first presented with leukocytoclastic vasculitis and responded dramatically to antibiotic treatment against salmonella, another case of leukocytoclastic vasculitis was observed during follow up period. Vasculitic skin involvement has been reported previously in patients with MSMD¹³. Three patients with IL-12/IL-23 deficiency out of 141 patients (2.1%) developed vasculitic skin lesions and was considered to be caused by antigenic overload or a defect in immune complex clearance¹³.

Candidiasis was observed as an associated feature in 5 (28%) patients. In the literature, mucocutaneous candidiasis has been reported in 32 of 132 (25%) symptomatic IL-12R β 1

deficient patients¹³. Although oropharyngeal candidiasis is the most common form, esophageal, vulvovaginal and invasive candiasis have also been documented¹⁴. First candida infection episode may appear even before BCG infection¹⁴. Impaired interleukin 23-dependent interleukin 17 immunity along with IFN- γ seems to be responsible from predisposition to candida infection^{10,14}.

Infections with some other intracellular pathogens (nocardia, klebsiella, histoplasma, paracoccidiomycose, coccidioides, toxoplasma, listeria) have been described mostly in single cases¹³. One of our patients experienced recurrent leishmaniasis¹⁶. He responded well to lyposomal amphotericin B treatment, however since he showed recurrences after the cessation of therapy he was given prophylactic Amp B on which he did well for the last 9 years.

The patients were followed-up up to 21 years. The prognosis was poor only in patients admitted at later stages of BCG infection. Four of our patients who were admitted with and died of disseminated BCG infection were diagnosed during the 1990s when the awareness of the disease was poor.

Three mutations were recurrent and covered 12 out of 15 families (85%). In 27 Turkish families reported in Beaucoudrey's¹³ study, these 3 mutations covered 48% of the Turkish families.

The results of our patients showed that the analysis of the surface expression of IL-12R β 1 on activated lymphocytes in patients with features suggestive for this defect (e.g. patients with BCG infection, recurrent salmonella infections) and in family members is an effective method for screening of this entity. However, to prevent missing novel mutations which are associated with intact IL-12R β 1 expression, it may be advisable to measure IFN- γ production by activated T cells⁷. Other genetic etiologies for MSMD should also be searched. Among our patients IL-12R β 1 is the most common etiology of MSMD, up until now only two IFN-yR1 and one Interferon Stimulating Gene 15 (ISG15) deficiency were identified in our center¹⁵. Infectious phenotype of these genetic disorders continues to expand and it may be advisable to investigate patients with recurrent

leishmaniasis and severe infections due to other infectious agents, although rarely described in these patients, for IL-12R β 1 deficiency.

REFERENCES

- 1. Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. Annu Rev Immunol 2002; 20: 581-620.
- Bustamante J, Boisson-Dupuis S, Abel L, et al. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol 2014; 26: 454-470.
- Sanal O, Turul T, De Boer T, et al. Presentation of interleukin-12/-23 receptor beta1 deficiency with various clinical symptoms of Salmonella infections. J Clin Immunol 2006; 26: 1-6.
- Jouanguy E, Altare F, Lamhamedi S, et al. Interferongamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med 1996; 335: 1956-1961.
- de Jong R, Altare F, Haagen IA, et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptordeficient patients. Science 1998; 280: 1435-1438.
- 6. Altare , Jouanguy E, Lamhamedi-Cherradi S, et al. A causative relationship between mutant IFNgR1 alleles and impaired cellular response to IFNgamma in a compound heterozygous child. Am J Hum Genet 1998; 62: 723-726.
- 7. Ramirez-Alejo N, Santos-Argumedo L. Innate defects of the IL-12/IFN- γ axis in susceptibility to infections by mycobacteria and salmonella. J Interferon Cytokine Res 2014; 34: 307-317.
- 8. van de Vosse E, Haverkamp M. H, Ramirez-Alejo N, et al. IL-12R β l deficiency: mutation update and description of the IL12RB1 variation database. Hum Mutat 2013; 34: 1329-1339.
- 9. Feinberg J, Fieschi C, Doffinger R, et al. Bacillus Calmette Guerin triggers the IL-12/IFN-gamma axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between monocytes, NK, and T lymphocytes. Eur J Immunol 2004; 34: 3276-3284.
- 10 de Beaucoudrey L, Puel A, Filipe-Santos O, et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 2008; 205: 1543-1550
- 11. Puel A, Picard C, Cypowyj S, et al. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines. Curr Opin Immunol 2010; 22: 467-474.
- 12. van de Vosse E, van Dissel JT, Ottenhoff TH. Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect Dis 2009; 9: 688-698.
- 13. de Beaucoudrey L, Samarina A, Bustamante J, et al. Revisiting human IL- $12R\beta 1$ deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore) 2010; 89: 381-402.

- 14. Ouederni M, Sanal O, Ikinciogullari A, et al. Clinical features of Candidiasis in patients with inherited interleukin 12 receptor β 1 deficiency. Clin Infect Dis 2014; 58:204-213.
- Bogunovic D, Byun M, Durfee L. A, et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 2012; 337: 1684-1688.
- Sanal O, Turkkani G, Gumruk F, et al. A case of interleukin-12 receptor beta-1 deficiency with recurrent leishmaniasis. Pediatr Infect Dis J 2007; 26: 366-388.
- 17. Lichtenauer-Kaligis E. G, de Boer T, Verreck F. A, et al. Severe Mycobacterium bovis BCG infections in a large series of novel IL-12 receptor betal deficient patients and evidence for the existence of partial IL-12 receptor betal deficiency. Eur J Immunol 2003; 33: 59-69.
- Sanal O, Morgan G, Gocmen A, et al. Isolated cutaneous response to granulocyte-monocyte colony stimulating factor in fatal idiopathic disseminated Bacillus-Calmette-Guerin infection. Eur J Pediatr 2000; 159: 149-152.
- Ozen M , Ceyhan M, Sanal O, et al. Recurrent Salmonella bacteremia in interleukin-12 receptor beta1 deficiency. J Trop Pediatr 2006; 52: 296-298.